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Preface

Matrix Theory and Linear Algebra is an introduction to linear algebra for students in the first or second

year of university. The book contains enough material for a 2-semester course. Major topics of linear

algebra are presented in detail, and many applications are given. Although it is not a proof-oriented book,

proofs of most important theorems are provided.

Each section begins with a list of desired outcomes which a student should be able to achieve upon

completing the chapter. Throughout the text, examples and diagrams are given to reinforce ideas and

provide guidance on how to approach various problems. Students are encouraged to work through the

suggested exercises provided at the end of each section. Selected solutions to these exercises are given at

the end of the text.

Open text

This is an open text, licensed under the Creative Commons “CC BY 4.0” license. This means, among

other things, that you are permitted to copy and redistribute this textbook in any medium or format. For
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enses/by/4.0/ for details of the licensing terms.
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a/~selinger/linear-algebra/.

There, you can find the most up-to-date version. The website also contains supplementary material, a link

to the source code and license, options for purchasing a printed version of this book, and more.

Reporting typos

Like all books, this book likely contains some typos and other errors. However, since it is an open text,

typos can easily be fixed and an updated version posted online. It is my intention to fix all typos. If

you find a typo (no matter how small), please report it to me at selinger@mathstat.dal.ca. Thanks to

the following people who have already reported typos: Yaser Alkayale, Daniele Arcara, Hassaan Asif,
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Sequeira, Yi Shu, Bruce Smith, Asmita Sodhi, Michael St Denis, Daniele Turchetti, Liu Yuhao, and Ziqi

Zhang.
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1. Systems of linear equations

1.1 Geometric view of systems of equations

Outcomes

A. Relate the types of solution sets of a system of two (three) variables to the intersections of

lines in a plane (the intersection of planes in 3-dimensional space)

As you may remember, linear equations like 2x+3y = 6 can be graphed as straight lines in the coordinate

plane. We say that this equation is in two variables, in this case x and y. Suppose you have two such

equations, each of which can be graphed as a straight line, and consider the resulting graph of two lines.

What would it mean if there exists a point of intersection between the two lines? This point, which lies

on both graphs, gives x and y values for which both equations are true. In other words, this point gives the

ordered pair (x,y) that satisfies both equations. If the point (x,y) is a point of intersection, we say that (x,y)
is a solution to the two equations. In linear algebra, we often are concerned with finding the solution(s)

to a system of equations, if such solutions exist. First, we consider graphical representations of solutions

and later we will consider the algebraic methods for finding solutions.

When looking for the intersection of two lines in the plane, several situations may arise. The follow-

ing picture demonstrates the possible situations when considering two equations (two lines in the plane)

involving two variables.

x

y

One solution

x

y

No solutions

x

y

Infinitely many solutions

In the first diagram, there is a unique point of intersection, which means that there is only one (unique)

solution to the two equations. In the second, there are no points of intersection and no solution. There is

no solution because the two lines are parallel and they never intersect. The third situation that can occur,

as demonstrated in diagram three, is that the two lines are really the same line. For example, x+ y = 1

and 2x+2y = 2 are two equations that yield the same line when graphed. In this case there are infinitely

many points that are solutions of these two equations, as every ordered pair which is on the graph of the

line satisfies both equations.

When considering linear systems of equations, there are always three possibilities for the number of

solutions: there is exactly one solution, there are infinitely many solutions, or there is no solution. When

3



4 Systems of linear equations

we speak of solving a system of equations, we usually mean finding all of its solutions. This can mean

finding one solution (if the solution is unique), finding infinitely many solutions, or finding that there is no

solution.

Example 1.1: A graphical solution

Use a graph to solve the following system of equations:

x+ y = 3

y− x = 5.

Solution. Through graphing the above equations and identifying the point of intersection, we can find the

solution(s). Remember that we must have either one solution, infinitely many, or no solutions at all. The

following graph shows the two equations, as well as the intersection. Remember, the point of intersection

represents the solution of the two equations, or the (x,y) which satisfy both equations. In this case, there

is one point of intersection at (−1,4) which means we have one unique solution, x =−1, y = 4.

x+ y = 3

y− x = 5

−4 −3 −2 −1 1

1

2

3

4

5

6

x

y

(x,y) = (−1,4)

♠
In the above example, we investigated the intersection point of two equations in two variables, x and y.

Now we will consider the graphical solutions of three equations in two variables.

Consider a system of three equations in two variables. Again, these equations can be graphed as

straight lines in the plane, so that the resulting graph contains three straight lines. Recall the three possi-

bilities for the number of solutions: no solution, one solution, and infinitely many solutions. With three

lines, there are more complex ways of achieving these situations. For example, you can imagine the case

of three intersecting lines having no common point of intersection. Perhaps you can also imagine three

intersecting lines which do intersect at a single point. These two situations are illustrated below.

x

y

No solution

x

y

One solution



1.1. Geometric view of systems of equations 5

Consider the first picture above. While all three lines intersect with one another, there is no common

point of intersection where all three lines meet at one point. Hence, there is no solution to the three

equations. Remember, a solution is a point (x,y) which satisfies all three equations. In the case of the

second picture, the lines intersect at a common point. This means that there is one solution to the three

equations whose graphs are the given lines. You should take a moment now to draw the graph of a system

which results in three parallel lines. Next, try the graph of three identical lines. Which type of solution is

represented in each of these graphs?

We have now considered the graphical solutions of systems of two equations in two variables, as well

as three equations in two variables. However, there is no reason to limit our investigation to equations in

two variables. We will now consider equations in three variables.

You may recall that equations in three variables, such as 2x+ 4y− 5z = 8, form a plane. Above, we

were looking for intersections of lines in order to identify any possible solutions. When graphically solving

systems of equations in three variables, we look for intersections of planes. These points of intersection

give the (x,y,z) that satisfy all the equations in the system. What types of solutions are possible when

working with three variables? Consider the following picture involving two planes, which are given by

two equations in three variables.

Notice how these two planes intersect in a line. This means that the points (x,y,z) on this line satisfy

both equations in the system. Since the line contains infinitely many points, this system has infinitely

many solutions.

It could also happen that the two planes fail to intersect. However, is it possible to have two planes

intersect at a single point? Take a moment to attempt drawing this situation, and convince yourself that it

is not possible! This means that when we have only two equations in three variables, there is no way to

have a unique solution! Hence, the only possibilities for the number of solutions of two equations in three

variables are no solution or infinitely many solutions.

Now imagine adding a third plane. In other words, consider three equations in three variables. What

types of solutions are now possible? Consider the following diagram.
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In this diagram, there is no point which lies in all three planes. There is no intersection between all

three planes so there is no solution. The picture illustrates the situation in which the line of intersection

of the new plane with one of the original planes forms a line parallel to the line of intersection of the first

two planes. However, in three dimensions, it is possible for two lines to fail to intersect even though they

are not parallel. Such lines are called skew lines.

Recall that when working with two equations in three variables, it was not possible to have a unique

solution. Is it possible when considering three equations in three variables? In fact, it is possible, and we

demonstrate this situation in the following picture.

In this case, the three planes have a single point of intersection. Can you think of other possibilities?

Another is that the three planes could intersect in a line, resulting in infinitely many solutions, as in the

following diagram.

We have now seen how three equations in three variables can have no solution, a unique solution, or

intersect in a line resulting in infinitely many solutions. It is also possible that all three equations describe

the same plane, which also leads to infinitely many solutions.

You can see that when working with equations in three variables, there are many more possibilities for

achieving solutions (or no solutions) than when working with two variables. It may prove enlightening to

spend time imagining (and drawing) many possible scenarios, and you should take some time to try a few.

You should also take some time to imagine (and draw) graphs of systems in more than three variables.

Equations like x+ y− 2z+ 4w = 8 with more than three variables are often called hyperplanes. You

may soon realize that it is tricky to draw the graphs of hyperplanes! In fact, most people cannot visualize

more than three dimensions. Fortunately, through the tools of linear algebra, we can examine systems

of equations in four variables, five variables, or even hundreds or thousands of variables, without ever

needing to graph them. Instead we will use algebra to manipulate and solve these systems of equations.

We will introduce these algebraic tools in the following sections.
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Exercises

Exercise 1.1.1 Graphically, find the point (x,y) which lies on both of the lines x+3y = 1 and 4x− y = 3.

That is, graph each line and see where they intersect.

Exercise 1.1.2 Graphically, find the point of intersection of the two lines 3x+ y = 3 and x+2y = 1. That

is, graph each line and see where they intersect.

Exercise 1.1.3 You have a system of k equations in two variables, k ≥ 2. Explain the geometric signifi-

cance of

(a) No solution.

(b) A unique solution.

(c) An infinite number of solutions.

Exercise 1.1.4 Draw a picture of three planes such that no two of the planes are parallel, but the three

planes have no common intersection.

1.2 Algebraic view of systems of equations

Outcomes

A. Recognize the difference between a linear equation and a non-linear equation.

B. Determine whether a tuple of real numbers is a solution for a system of linear equations.

C. Understand what it means for a system of linear equations to be consistent or inconsistent.

We have taken an in-depth look at graphical representations of systems of equations, as well as how to

find possible solutions graphically. Our attention now turns to working with systems algebraically.

Definition 1.2: Linear equation

A linear equation is an equation of the form

a1x1 +a2x2 + . . .+anxn = b.

Here, a1, . . . ,an are real numbers called the coefficients of the equation, b is a real number called

the constant term of the equation, and x1, . . . ,xn are variables.
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Real numbers, such as the coefficients a1, . . . ,an, the constant term b, or the values of the variables

x1, . . . ,xn, will also be called scalars. For now, the word “scalar” is just a synonym for “real number”.

Later, in Section 1.8, we will discover other kinds of scalars.

Example 1.3: Linear vs. non-linear equation

Which of the following equations are linear?

2x+3y = 5

2x2 +3y = 5

2
√

x+3y = 5

(
√

2)x+3y = 52

Solution. The equation 2x+3y = 5 is linear. The equation 2x2 +3y = 5 is not linear, because it contains

the square of a variable instead of a variable. The equation 2
√

x+ 3y = 5 is also not linear, because the

square root is applied to one of the variables. On the other hand, the equation (
√

2)x+3y = 52 is linear,

because
√

2 and 52 are real numbers, and can therefore be used as coefficients and constant terms. ♠

We also permit minor notational variants of linear equations. The equation 2x−3y = 5 is linear although

Definition 1.2 does not mention subtraction, because it can be regarded as just another notation for 2x+
(−3)y = 5. Similarly, the equation 2x = 5+3y can be regarded as linear, because it can be easily rewritten

as 2x−3y = 5 by bringing all the variables (and their coefficients) to the left-hand side. When we need to

emphasize that some linear equation is literally of the form a1x1 +a2x2 + . . .+anxn = b, we say that the

equation is in standard form. Thus, the standard form of the equation 2x = 5+3y is 2x+(−3)y = 5.

A solution to a linear equation is an assignment of real numbers to the variables, making the equation

true. More precisely, if r1, . . . ,rn are real numbers, the assignment x1 = r1, . . . , xn = rn is a solution to the

equation in Definition 1.2 if the real number a1r1+a2r2+ . . .+anrn is equal to the real number b. To save

space, we often write solutions in tuple notation1 as (x1, . . . ,xn) = (r1, . . . ,rn). When there is no doubt

about the order of the variables, we also often simply write the solution as (r1, . . . ,rn).

Example 1.4: Solutions of a linear equation

Consider the linear equation 2x+3y−4z = 5. Which of the following are solutions? (a) (x,y,z) =
(1,1,0), (b) (x,y,z) = (0,3,1), (c) (x,y,z) = (1,1,1).

Solution. The assignment (x,y,z) = (1,1,0) is a solution because 2(1)+3(1)−4(0)= 5. The assignment

(x,y,z) = (0,3,1) is also a solution, because 2(0)+3(3)−4(1) = 5. On the other hand, (x,y,z) = (1,1,1)
is not a solution, because 2(1)+3(1)−4(1) = 1 6= 5. ♠

A system of linear equations is just several linear equations taken together.

1The terminology “tuple” arose as follows. A collection of two items is called a “pair”, a collection of three items is called

a “triple”, followed by “quadruple”, “quintuple”, “sextuple”, and so on. You have to know Latin to know what the next ones

are called. To avoid these Latin terms, mathematicians started saying 4-tuple, 5-tuple, 6-tuple and so on, and more generally,

n-tuple for an ordered collection of n items. When n doesn’t matter or is clear from the context, we often just say “tuple”.
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Definition 1.5: System of linear equations

A system of linear equations is a list of equations

a11x1 +a12x2 + . . .+a1nxn = b1

a21x1 +a22x2 + . . .+a2nxn = b2
...

am1x1 +am2x2 + . . .+amnxn = bm,

where ai j and bi are scalars (i.e., real numbers). The above is a system of m equations in the n

variables x1,x2 . . . ,xn. As before, the numbers ai j are called the coefficients and the numbers bi are

called the constant terms of the system of equations.

The relative size of m and n is not important here. We may have more variables than equations, more

equations than variables, or an equal number of equations and variables.

A solution to a system of linear equations is an assignment of real numbers to the variables that is a

solution to all of the equations in the system.

Example 1.6: Solutions of a system of linear equations

Consider the system of linear equations

2x + 3y − 4z = 5

−2x + y + 2z = −1.

Which of the following are solutions of the system? (a) (x,y,z) = (1,1,0), (b) (x,y,z) = (6,3,4), (c)

(x,y,z) = (0,3,1).

Solution. The assignment (x,y,z) = (1,1,0) is a solution of this system of equations, because it is a

solution to the first equation and the second equation. Also, (x,y,z) = (6,3,4) is another solution of this

system of equations (check this!). On the other hand, (x,y,z) = (0,3,1) is not a solution of the system,

because although it is a solution to the first equation, it is not a solution to the second equation. ♠

Recall from Section 1.1 that a system of equations either has a unique solution, infinitely many solutions,

or no solution. It is very important to us whether a system of equations has solutions or not. For this

reason, we introduce the following terminology:

Definition 1.7: Consistent and inconsistent systems

A system of linear equations is called consistent if there exists at least one solution. It is called

inconsistent if there is no solution.

If we think of each equation as a condition that must be satisfied by the variables, consistent means that

there is some choice of values for the variables which can satisfy all of the conditions. Inconsistent means

that there is no such choice of values for the variables. In the following sections, you will learn a method

for determining whether a system of equations is consistent or not, and in case it is consistent, to find all

of its solutions.
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Exercises

Exercise 1.2.1 Which of the following equations are linear?

(a) 2x−3y+4z =−10

(b) 2.123x1 +5.541x2−9.101x3 = 11.012

(c) x2 + y2 + z2 = 1

(d) 1√
2
x+43y = sin(π

3 )

(e) x+ yz = 3

Exercise 1.2.2 Consider the system of equations

x + 2y + 3z + 4w = 4

x + y + z + w = 2

x + 2y + 2z + w = 2.

For each of the following tuples (x,y,z,w) of real numbers, determine whether it is a solution of the first

equation, second equation, and/or third equation. Which ones are solutions to the system of equations?

(a) (2,0,−2,2) (b) (2,2,−2,0) (c) (1,1,−1,1) (d) (3,0,−1,1) (e) (2,−2,2,0)

1.3 Elementary operations

Outcomes

A. Use elementary operations to simplify a system of equations.

B. Solve some systems of equations by back substitution.

C. Write a system of equations in augmented matrix form.

D. Perform elementary row operations on augmented matrices.

Our strategy for solving systems of linear equations is to successively transform a difficult system of

equations into a simpler equivalent system. Here, by an “equivalent” system of equations we mean one

that has the same solutions as the original one. We will perform the process of simplifying a system of

equations by applying certain basic steps called “elementary operations”.
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Definition 1.8: Equivalent systems

Two systems of equations are called equivalent if they have the same solutions. This means that

every solution of the first system is also a solution of the second system, and every solution of the

second system is also a solution of the first system.

How can we know whether two systems of equations are equivalent? It turns out that the following basic

operations always transform a system of equations into an equivalent system. In fact, these operations are

the key tool we use in linear algebra to solve systems of equations.

Definition 1.9: Elementary operations

Elementary operations are the following operations:

1. Interchange the order in which the equations are listed.

2. Multiply any equation by a non-zero scalar.

3. Add a multiple of one equation to another equation.

The most important property of the elementary operations is that they do not change the solutions to the

system of equations. Before proving that this is true in general, we will first verify it in an example.

Example 1.10: Equivalent systems

Show that the systems
x+2y = 7

−2x = −6

and
x+2y = 7

4y = 8

are equivalent.

Solution. We can see that the second system is obtained from the first one by applying an elementary

operation, namely, adding 2 times the first equation to the second equation:

−2x+2(x+2y) =−6+2(7)

By simplifying, we obtain 4y = 8.

To verify that the two systems are indeed equivalent, let us first solve the first system. From the

second equation, we see that x = 3. Substituting x = 3 into the first equation, the equation becomes

3+2y = 7, which we can solve to find y = 2. Therefore, the only solution to the first system of equations

is (x,y) = (3,2).

Now let us solve the second system. From the second equation, we find that y = 2. Substituting y = 2

into the first equation, we get x+4 = 7, which we can solve to find x = 3. Therefore, the only solution to
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the second system of equations is (x,y) = (3,2). Since the two systems have the same solutions, they are

equivalent. ♠

This example illustrates how an elementary operation applied to a system of two equations in two variables

does not affect the set of solutions. The same is true for any size of system in any number of variables.

In the following theorem, we use the notation Ei to represent the left-hand side of an equation, while bi

denotes a constant term.

Theorem 1.11: Elementary operations and solutions

Suppose you have a system of two linear equations in any number of variables

E1 = b1

E2 = b2.
(1.1)

Then the following systems are equivalent to (1.1):

1.
E2 = b2

E1 = b1.
(1.2)

2.
E1 = b1

kE2 = kb2
(1.3)

for any scalar k, provided k 6= 0.

3.
E1 = b1

E2 + kE1 = b2 + kb1
(1.4)

for any scalar k (including k = 0).

Proof.

1. By definition, a solution of (1.1) is an assignment of scalars to the variables that is a solution to

E1 = b1 and to E2 = b2. But that is exactly the same thing as a solution of (1.2).

2. To prove that the systems (1.1) and (1.3) have the same solution set, let (x1, . . . ,xn) be any solution

of (1.1). Then E1 = b1 and E2 = b2 are both true. Multiplying both sides of the last equation by k,

we know that kE2 = kb2 is true, and so (x1, . . . ,xn) is a solution of (1.3). Conversely, let (x1, . . . ,xn)
be any solution of (1.3). Then E1 = b1 and kE2 = kb2 are true. Because k 6= 0, we are allowed to

divide both sides of the last equation by k, and therefore E2 = b2 is true. Hence, (x1, . . . ,xn) is also

a solution of (1.1). Since we have shown that every solution of (1.1) is a solution of (1.3) and vice

versa, the two systems are equivalent.

3. To prove that the systems (1.1) and (1.4) have the same solution set, let (x1, . . . ,xn) be any solution

of (1.1). Then E1 = b1 and E2 = b2 are both true. We multiply both sides of the first equation by k

to obtain kE1 = kb1. Then kE1 +E2 = kb1+b2, and hence (x1, . . . ,xn) is a solution of (1.4). For the

converse direction, assume (x1, . . . ,xn) is a solution of E1 = b1 and kE1 +E2 = kb1 +b2. From the
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first equation, we have kE1 = kb1, and subtracting this from the second equation, we get E2 = b2,

hence (x1, . . . ,xn) is a solution of (1.1). Note that unlike in case 2., there was no need to divide by k,

and therefore it was not necessary to require k 6= 0.

♠

We will now use elementary operations to solve a system of three equations and three variables.

Example 1.12: Solving a system of equations with elementary operations

Solve the system of equations
x + 3y + 6z = 25

2x + 7y + 14z = 58

2y + 5z = 19.

Solution. By Theorem 1.11, we can do elementary operations on this system without changing the solution

set. We will therefore use elementary operations to try to simplify the system of equations. First, we add

(−2) times the first equation to the second equation. This yields the system

x + 3y + 6z = 25

y + 2z = 8

2y + 5z = 19.

Next, we add (−2) times the second equation to the third equation. This yields the system

x + 3y + 6z = 25

y + 2z = 8

z = 3.

(1.5)

At this point, it is easy to find the solution. The last equation tells us that z = 3. We can substitute this

value of z back into the second equation to get

y+2(3) = 8,

which we can simplify and solve for y to find that y = 2. Finally, we can substitute the values z = 3 and

y = 2 back into the first equation to get

x+3(2)+6(3) = 25.

Simplifying and solving for x, we find that x = 1. Hence, the solution to the system is (x,y,z) = (1,2,3).

The process we followed for solving (1.5) by first computing z, then y, then x is called back substitu-

tion. Alternatively, we could have continued from (1.5) with more elementary operations as follows. Add

(−2) times the third equation to the second and then add (−6) times the third to the first. This yields

x + 3y = 7

y = 2

z = 3.
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Now add (−3) times the second to the first. This yields

x = 1

y = 2

z = 3,

a system which has the same solution set as the original system. This second method avoided back substi-

tution and led to the same solution set. It is your decision which you prefer to use, as both methods lead

to the correct solution, (x,y,z) = (1,2,3). ♠

Note how we have written each system of equations so that “like” variables line up on columns: one

column for x, one column for y, and one column for z. This makes it easier to perform elementary

operations. It is often useful to simplify the notation further, writing systems of equations in augmented

matrix notation. Recall the system of equations from Example 1.12:

x + 3y + 6z = 25

2x + 7y + 14z = 58

2y + 5z = 19.

This system can be written as an augmented matrix as follows:




1 3 6 25

2 7 14 58

0 2 5 19


 .

A matrix is just a 2-dimensional array of numbers. An augmented matrix has two parts separated by a

vertical line. Notice that the augmented matrix notation has exactly the same information as the original

system of equations. All the coefficients are written on the left side of the vertical line, and all the constant

terms are written on the right side of the vertical line. These two parts of the augmented matrix are also

called the coefficient matrix and the constant matrix. Each row of the augmented matrix corresponds to

one linear equation. For example, the top row
[

1 3 6 | 25
]

corresponds to the equation

x+3y+6z = 25.

Each column of the coefficient matrix contains the coefficients for one particular variable. For example,

the first column




1

2

0


 contains all of the coefficients for the variable x. If a variable does not appear in

an equation, the corresponding coefficient is 0. In general, the augmented matrix of a linear system of

equations is defined as follows.



1.3. Elementary operations 15

Definition 1.13: Augmented matrix of a system of linear equations

The augmented matrix of the system of linear equations

a11x1 + . . .+a1nxn = b1
...

am1x1 + . . .+amnxn = bm

is 


a11 · · · a1n b1
...

...
...

am1 · · · amn bm


 .

We can consider elementary operations in the context of the augmented matrix. The elementary operations

can be used on the rows of an augmented matrix just as we used them on equations previously. For

example, instead of adding a multiple of one equation to another, we will now be adding a multiple of one

row to another. Note that Theorem 1.11 implies that any elementary row operation used on an augmented

matrix will not change the solutions to the corresponding system of equations. For reference, here are the

three kinds of elementary row operations, along with a shorthand notation we are going to use for them.

Definition 1.14: Elementary row operations

The elementary row operations are the following:

1. Switch two rows. (Notation: Ri ↔ R j to switch rows i and j).

2. Multiply a row by a non-zero number. (Notation: Ri ← kRi to multiply row i by k).

3. Add a multiple of one row to another row. (Notation: Ri ← Ri + kR j to add k times row j to

row i.)

We write “≃” to indicate that two augmented matrices are equivalent, i.e., that the corresponding systems

of equations have the same set of solutions.

Example 1.15: Elementary row operations

Repeat the calculations of Example 1.12, using the notations we just introduced.

Solution. We have:



1 3 6 25

2 7 14 58

0 2 5 19


 R2 ← R2−2R1≃




1 3 6 25

0 1 2 8

0 2 5 19


 R3 ← R3−2R2≃




1 3 6 25

0 1 2 8

0 0 1 3


 .

The final augmented matrix corresponds to the system

x + 3y + 6z = 25

y + 2z = 8

z = 3,
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which is the same as (1.5). We can solve it by back substitution to obtain the solution x = 1, y = 2, and

z = 3.

Alternatively, we can continue with additional row operations:




1 3 6 25

0 1 2 8

0 0 1 3




R1 ← R1−6R3

R2 ← R2−2R3≃




1 3 0 7

0 1 0 2

0 0 1 3


 R1 ← R1−3R2≃




1 0 0 1

0 1 0 2

0 0 1 3


 .

Notice how this notation is much more succinct than what we used in Example 1.12. ♠

We end this section with a final word of caution: logically, you can only perform one elementary row

operation at a time. For example, it would not be correct to simultaneously add R1 to R2 and add R2 to R1.

What is permitted is to first add R1 to R2, then then add the new R2 to R1. Although we may sometimes try

to save space by skipping an intermediate step, as in the last example where we applied the row operations

R1 ← R1−6R3 and R2 ← R2−2R3 in one step, it is important to realize that logically, each row operation

must be performed separately before the next one can be done. When in doubt, the only safe course of

action is not to skip any steps.

Exercises

Exercise 1.3.1 Use elementary operations to solve the system of equations

3x+ y = 3

x+2y = 1.

Exercise 1.3.2 Use elementary operations to find the point (x,y) that lies on both lines x+ 3y = 1 and

4x− y = 3.

Exercise 1.3.3 Use elementary operations to determine whether the three lines x+ 2y = 1, 2x− y = 1,

and 4x+3y = 3 have a common point of intersection. If so, find the point, and if not, tell why they don’t

have such a common point of intersection.

Exercise 1.3.4 Do the three planes, x+ y−3z = 2, 2x+ y+ z = 1, and 3x+2y−2z = 0 have a common

point of intersection? If so, find one and if not, tell why there is no such point.

Exercise 1.3.5 Solve the following system of equations by back substitution.

x + 3y − 2z = 5

y + 3z = 4

z = 1.

Exercise 1.3.6 Write the following system of linear equations as an augmented matrix. Caution: you first

have to simplify and rearrange the equations so that “like” variables are lined up in columns. Write the



1.4. Gaussian elimination 17

variables in the order x, y, z.

x−3z+2y = 5

6− x = 4+ y− z

2x+3 = x+3y.

Exercise 1.3.7 Four times the weight of Gaston is 150kg more than the weight of Ichabod. Four times

the weight of Ichabod is 660kg less than seventeen times the weight of Gaston. Four times the weight of

Gaston plus the weight of Siegfried equals 290kg. Brunhilde would balance all three of the others. Find

the weights of the four people.

1.4 Gaussian elimination

Outcomes

A. Find the echelon form of a matrix.

B. Determine whether a system of linear equations has no solution, a unique solution or an

infinite number of solutions from its echelon form.

C. Solve a system of linear equations using Gaussian elimination and back substitution.

D. Find the rank of a matrix.

E. Determine whether a consistent system of linear equations has a unique solution or an infinite

number of solutions from its rank.

In the previous section, we saw examples of how to solve a system of equations using elementary row

operations (and sometimes back substitution). But it is not clear whether every system of equations can be

solved this way. How do we know which elementary row operation to apply next? In this section, you will

learn a procedure called Gaussian elimination by which every system of linear equations can be solved

systematically.

Before we start, let’s figure out what it means to be “done”. At what point should we stop performing

row operations? The answer is that we will stop performing row operations when the system of equations

is in a special form called echelon form, which we now define.
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Definition 1.16: Echelon form

An entry of an augmented matrix is called a leading entry or pivot entry if it is the leftmost non-

zero entry of a row. An augmented matrix is in echelon form (also called row echelon form)

if

1. All rows of zeros are below all non-zero rows.

2. Each leading entry of a row is in a column to the right of the leading entry of any row above

it.

A column containing a pivot entry is also called a pivot column.

The word echelon comes from French échelle, which means ladder. This is because an echelon form looks

a bit like a ladder or staircase. Here are some examples of echelon forms.

Example 1.17: Matrices in echelon form

The following augmented matrices are in echelon form. We have circled the pivot entries for clarity.




0 5 2 1 3 5

0 0 0 0 1 6

0 0 0 0 0 0

0 0 0 0 0 0


 ,




1 4 0 0 5 0

0 0 1 0 2 0

0 0 0 1 4 0

0 0 0 0 0 1


 ,




3 0 6 2

0 1 4 0

0 0 2 1

0 0 0 0




Example 1.18: Not in echelon form

The following augmented matrices are not in echelon form.




0 0 0 0

1 2 3 3

0 1 0 2

0 0 0 1

0 0 0 0




,




1 2 3

2 4 −6

4 0 7


 ,




0 2 3 3

1 5 0 2

0 0 1 0

0 0 0 0




In the first matrix, a row of zeros is above a non-zero row. In the second and third matrix, the leading

entries of some rows are not to the right of the leading entries of previous rows.

An augmented matrix can always be converted to echelon form by using elementary row operations. The

following algorithm shows how to do this.
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Algorithm 1.19: Gaussian elimination

This algorithm provides a method for using row operations to take a matrix to its echelon form. We

begin with the matrix in its original form.

1. Starting from the left, find the first non-zero column. This is the first pivot column, and the

position at the top of this column will be the position of the first pivot entry. Switch rows if

necessary to place a non-zero number in the first pivot position.

2. Use row operations to make the entries below the first pivot entry (in the first pivot column)

equal to zero.

3. Ignoring the row containing the first pivot entry, repeat steps 1 and 2 with the remaining rows.

Repeat the process until there are no more non-zero rows left.

Most often we will apply this algorithm in order to solve a system of linear equations. This works by first

converting the system to echelon form, then using back substitution to find the solutions. The next few

examples show how to do this.

Example 1.20: Solving a system of equations: one solution

Solve the following system of equations:

x+4y+3z = 11

2x+10y+7z = 27

x+ y+2z = 5.

Solution. The augmented matrix for this system is



1 4 3 11

2 10 7 27

1 1 2 5


 .

In order to find the solution(s) to this system, we first use Algorithm 1.19 to carry the augmented matrix

to echelon form. Notice that the first column is non-zero, so this is our first pivot column. The first entry

in the first row, 1, is the first pivot entry. We will use row operations to create zeros in the entries below

the 1. 


1 4 3 11

2 10 7 27

1 1 2 5


 R2 ← R2−2R1≃




1 4 3 11

0 2 1 5

1 1 2 5


 R3 ← R3−R1≃




1 4 3 11

0 2 1 5

0 −3 −1 −6




Now the entries in the first column below the pivot position are zeros. We now look for the second pivot

column, which in this case is column two. Here, the 2 in the second row and second column is in the pivot

entry. We could create a zero below the 2 with a single row operation by adding 3
2 times the second row

from the third row. But it is sometimes more convenient not to work with fractions, and therefore we start

instead by multiplying the third row by 2.



1 4 3 11

0 2 1 5

0 −3 −1 −6


 R3 ← 2R3≃




1 4 3 11

0 2 1 5

0 −6 −2 −12


 R3 ← R3+3R2≃




1 4 3 11

0 2 1 5

0 0 1 3



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The final matrix is our desired echelon form.



1 4 3 11

0 2 1 5

0 0 1 3


 (1.6)

Now we do back substitution to solve for z, y, and then x. The last equation of the echelon form gives us

z = 3. Substituting this into the second equation, we get 2y+3 = 5, which we can solve for y to get y = 1.

Finally, substituting y = 1 and z = 3 into the first equation, we have x+4(1)+3(3) = 11, which we can

solve to get x =−2. Therefore we have the solution (x,y,z) = (−2,1,3).

At this point, it is a good idea to double-check this solution using the original equations

x+4y+3z = 11

2x+10y+7z = 27

x+ y+2z = 5.

For example, we can double-check that (−2)+ 4(1)+ 3(3) is indeed equal to 11, and similarly for the

other two equations. Double-checking the solution against the original equations is an excellent way to

guard against any errors that might have happened during the row operations or back substitution.

Finally, we note that (x,y,z) = (−2,1,3) is the only solution to this system of equations. There cannot

be any other solutions, because by Theorem 1.11, any solution of the original system of equations would

also have to be a solution of (1.6), and the back substitution leaves us no choice except z = 3, y = 1, and

x =−2. ♠

Example 1.21: Solving a system of equations: no solution

Solve the following system of equations:

y+2z = 2

2x+ y−2z = 3

4x− y−10z = 4.

Solution. The augmented matrix for this system is



0 1 2 2

2 1 −2 3

4 −1 −10 4


 .

We use Algorithm 1.19 to carry the augmented matrix to echelon form. The first column is non-zero and

will be the first pivot column. We switch the first two rows to move a non-zero number into the pivot

position:

R2 ↔ R1≃




2 1 −2 3

0 1 2 2

4 −1 −10 4


 .

To create zeros below the pivot entry, we subtract 2 times the first row from the third row:

R3 ← R3−2R1≃




2 1 −2 3

0 1 2 2

0 −3 −6 −2


 .
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This finishes the first column. The second pivot column will be column two, with the 1 in the second row

and column as the pivot entry. We add 3 times the second row to the third row to create a zero below the

pivot:

R3 ← R3+3R2≃




2 1 −2 3

0 1 2 2

0 0 0 4


 .

This matrix is in echelon form. Note that the final pivot entry is on the right-hand side. The last row

corresponds to the equation

0x+0y+0z = 4.

This equation has no solution, because for all x,y,z, the left-hand side will equal 0 and not 4. Therefore,

there is no solution to the given system of equations. In other words, the system is inconsistent. ♠

Example 1.22: Solving a system of equations: an infinite set of solutions

Solve the following system of equations:

3x− y+5z = 8

y−10z = 1

6x− y = 17.

(1.7)

Solution. The augmented matrix of this system is




3 −1 5 8

0 1 −10 1

6 −1 0 17


 .

We use Gaussian elimination to carry the augmented matrix to echelon form. The first column is the first

pivot column, and 3 is the pivot entry. We use row operating to create zeros beneath the pivot entry. We

subtract 2 times the first row from the third row and get:

R3 ← R3−2R1≃




3 −1 5 8

0 1 −10 1

0 1 −10 1




Now, we have created zeros beneath the pivot entry in the first column, so we move on to the second pivot

column (which is the second column) and repeat the procedure. Subtracting the second row from the third

row, we get:

R3 ← R3−R2≃




3 −1 5 8

0 1 −10 1

0 0 0 0




This matrix is now in echelon form. Observe that the first two columns are pivot columns, and the third

column is not. We call the corresponding variables x and y pivot variables, and the variable z is a free

variable. The equations corresponding to this echelon form are

3x− y+5z = 8

y−10z = 1.
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Observe that the free variable z is not constrained by any equation. In fact, z can equal any number. We

choose t to be any number and let z = t. In this context t is called a parameter. We then use back

substitution to solve for the pivot variables y and x. From the second equation, we have y = 1+ 10z =
1+ 10t. From the first equation, we have 3x = 8+ y− 5z = 8+(1+ 10t)− 5t = 9+ 5t, and therefore

x = 3+ 5
3t. Therefore, the general solution of this system is

x = 3+ 5
3t

y = 1+10t

z = t,

where t is arbitrary. The system has an infinite set of solutions which are given by these equations. For

any value of the parameter t we select, x, y, and z will be given by the above equations. For example, if

we choose t = 4 then the corresponding solution would be

x = 3+ 5
3(4) =

29
3

y = 1+10(4) = 41

z = 4.

♠
In Example 1.22 the solution involved a parameter. It may happen that the solution to a system involves

more than one parameter, as shown in the following example.

Example 1.23: Solving a system of equations: a two-parameter set of solutions

Solve the following system of equations:

x+2y−2z+2w = 3

x+2y− z+3w = 5

x+2y−3z+w = 1.

Solution. The augmented matrix is 


1 2 −2 2 3

1 2 −1 3 5

1 2 −3 1 1


 .

We carry this matrix to echelon form using row operations.



1 2 −2 2 3

1 2 −1 3 5

1 2 −3 1 1




R2 ← R2−R1

R3 ← R3−R1≃




1 2 −2 2 3

0 0 1 1 2

0 0 −1 −1 −2


 R3 ← R3+R2≃




1 2 −2 2 3

0 0 1 1 2

0 0 0 0 0


 .

This matrix is in echelon form and we can see that the first and third columns are pivot columns, whereas

the second and fourth columns are not. Therefore, x and z are pivot variables and y and w are free variables.

We assign parameters y = s and w = t to the free variables. Then we do back substitution to solve for z

and x. From the second equation, we have z = 2−w = 2− t. From the first equation, we have x =
3−2y+2z−2w = 3−2s+2(2− t)−2t = 7−2s−4t. Therefore, the general solution is given by

x = 7−2s−4t

y = s

z = 2− t

w = t.
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It is customary to write this solution in the form




x

y

z

w


=




7−2s−4t

s

2− t

t


 . (1.8)

♠

In Examples 1.20–1.23, we have seem systems of equations with one solution, no solution, and infinitely

many solutions with one parameter as well as two parameters. Moreover, in each case, we have been

able to determine the number of solutions by looking at the echelon form of the augmented matrix. To

summarize, we have the following possibilities for a system of equations:

1. No solution: If the echelon form has a row of the form

[
0 0 0 b

]
,

where b 6= 0, then the system is inconsistent and has no solution.

2. One solution: For a consistent system of equations: If every column of the coefficient matrix of the

echelon form is a pivot column, the system has exactly one solution. The following is an example

of an augmented matrix in echelon form for a system of equations with one solution.




1 1 −2 5

0 2 3 0

0 0 1 2

0 0 0 0


 .

3. Infinitely many solutions: For a consistent system of equations: If not all columns of the coefficient

matrix of the echelon form are pivot columns, then the system has infinitely many solutions. In

this case, each variable corresponding to a non-pivot column is a free variable and can be assigned

a parameter. The remaining variables are pivot variables and can be expressed in terms of the

parameters. Therefore, the number of parameters in the general solution is equal to the number of

non-pivot columns. The following are examples of echelon forms for systems of equations with

infinitely many solutions. 


1 0 1 5

0 1 2 −3

0 0 0 0

0 0 0 0




or [
1 2 3 5

0 0 4 6

]
.

There is a special name for the number of pivot variables in a system of equations. It is called the rank

of the system.
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Definition 1.24: Rank of a matrix

Let A be a matrix and consider any echelon form of A. Then, the number r of pivot entries of A does

not depend on the echelon form we choose, and is called the rank of A. We denote it by rank(A).
The rank of a system of linear equations is the rank of its coefficient matrix (i.e., the matrix on the

left-hand side). It is equal to the number of pivot variables.

Example 1.25: Finding the rank of a matrix

Consider the matrix 


1 2 3

1 5 9

2 4 6




What is its rank?

Solution. First, we need to find an echelon form of A. Through the usual algorithm, we find that this is




1 0 −1

0 3 6

0 0 0


 .

Here we have two pivot entries, and therefore the rank of A is r = 2. ♠

Suppose we have a system of m equations in n variables, and suppose that n > m. Further assume that

the system is consistent. From our above discussion, we know that this system will have infinitely many

solutions. This is because there can be at most one pivot entry per row, and therefore at most m variables

can be pivot variables. It follows that there are at least n−m free variables. Therefore, the general solution

of this system has at least n−m parameters.

Notice that if n = m or n < m, it is possible for the system to have a unique solution or infinitely many

solutions. In all cases (n > m, n = m, or n < m), it is also possible for the system to be inconsistent (have

no solutions).

By refining the above argument, we get the following theorem:

Theorem 1.26: Rank and solutions of consistent system of equations

Consider a system of m equations in n variables, and assume that the coefficient matrix has rank r.

Assume further that the system is consistent.

1. If r = n, then the system has a unique solution.

2. If r < n, then the system has infinitely many solutions, with n− r parameters.

Here is a final summary of how the rank affects the number of solutions:

1. No solution. If the system of equations is inconsistent, then it has no solution, regardless of the rank.
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2. Unique solution. For a consistent system, suppose r = n. Then there is a pivot position in every

column of the coefficient matrix of A. Hence, there is a unique solution.

3. Infinitely many solutions. For a consistent system, suppose r < n. Then there are less pivot positions

than columns in the coefficient matrix, meaning that not every column is a pivot column. The

columns which are not pivot columns correspond to parameters. In fact, in this case we have n− r

parameters. The system has infinitely many solutions.

Exercises

Exercise 1.4.1 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � ∗ ∗ 0 ∗
0 0 � ∗ ∗ ∗
0 0 0 0 � ∗




Exercise 1.4.2 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗
0 � ∗ ∗
0 0 � ∗




Exercise 1.4.3 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � 0 ∗ 0 ∗
0 0 0 � ∗ ∗
0 0 0 0 � ∗




Exercise 1.4.4 Consider the following augmented matrix in which ∗ denotes an arbitrary number and �

denotes a non-zero number. Determine whether the given augmented matrix is consistent. If consistent, is

the solution unique? 


� ∗ ∗ ∗ ∗ ∗
0 � ∗ ∗ 0 ∗
0 0 0 0 � 0

0 0 0 0 ∗ �



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Exercise 1.4.5 Suppose a system of equations has fewer equations than variables. Will such a system

necessarily be consistent? If so, explain why and if not, give an example which is not consistent.

Exercise 1.4.6 If a system of equations has more equations than variables, can it have a solution? If so,

give an example and if not, explain why not.

Exercise 1.4.7 Find h such that [
2 h 4

3 6 7

]

is the augmented matrix of an inconsistent system.

Exercise 1.4.8 Find h such that [
1 h 3

2 4 6

]

is the augmented matrix of a consistent system.

Exercise 1.4.9 Find h such that [
1 1 4

3 h 12

]

is the augmented matrix of a consistent system.

Exercise 1.4.10 Choose h and k such that the augmented matrix shown has each of the following:

(a) one solution

(b) no solution

(c) infinitely many solutions

[
1 h 2

2 4 k

]

Exercise 1.4.11 Choose h and k such that the augmented matrix shown has each of the following:

(a) one solution

(b) no solution

(c) infinitely many solutions

[
1 2 2

2 h k

]

Exercise 1.4.12 Determine if the system is consistent. If so, is the solution unique?

x+2y+ z−w = 2

x− y+ z+w = 1

2x+ y− z = 1

4x+2y+ z = 5



1.4. Gaussian elimination 27

Exercise 1.4.13 Determine if the system is consistent. If so, is the solution unique?

x+2y+ z−w = 2

x− y+ z+w = 0

2x+ y− z = 1

4x+2y+ z = 3

Exercise 1.4.14 Determine which matrices are in echelon form.

(a)




1 1 2 0

0 0 3 2

0 0 0 0


 (b)

[
1 0 0

2 1 7

]
(c)




0 1 0 0 5

0 0 1 0 4

0 0 0 1 3




Exercise 1.4.15 Row reduce each of the following matrices to echelon form.

(a)




2 −1 3 −1

1 0 2 1

1 −1 1 −2


 (b)




0 0 −1 −1

1 1 1 0

1 1 0 −1


 (c)




3 −6 −7 −8

1 −2 −2 −2

1 −2 −3 −4




(d)




2 4 5 15

1 2 3 9

1 2 2 6


 (e)




4 −1 7 10

1 0 3 3

1 −1 −2 1


 ( f )




3 5 −4 2

1 2 −1 1

1 1 −2 0




(g)



−2 3 −8 7

1 −2 5 −5

1 −3 7 −8




Exercise 1.4.16 Find the general solution of the system whose augmented matrix is

(a)




1 2 0 2

1 3 4 2

1 0 2 1


 (b)




1 2 0 2

2 0 1 1

3 2 1 3


 (c)

[
1 1 0 1

1 0 4 2

]

(d)




1 0 2 1 1 2

0 1 0 1 2 1

1 2 0 0 1 3

1 0 1 0 2 2


 (e)




1 0 2 1 1 2

0 1 0 1 2 1

0 2 0 0 1 3

1 −1 2 2 2 0




Exercise 1.4.17 Solve the system of equations 7x+14y+15z = 22, 2x+4y+3z = 5, and 3x+6y+10z =
13.

Exercise 1.4.18 Solve the system of equations 3x− y+4z = 6, y+8z = 0, and −2x+ y =−4.

Exercise 1.4.19 Solve the system of equations 9x−2y+4z =−17, 13x−3y+6z =−25, and−2x−z = 3.
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Exercise 1.4.20 Solve the system of equations 65x + 84y + 16z = 546, 81x + 105y + 20z = 682, and

84x+110y+21z = 713.

Exercise 1.4.21 Solve the system of equations 8x+2y+3z=−3, 8x+3y+3z=−1, and 4x+y+3z=−9.

Exercise 1.4.22 Suppose a system of equations has fewer equations than variables and you have found a

solution to this system of equations. Is it possible that your solution is the only one? Explain.

Exercise 1.4.23 Suppose a system of linear equations has an augmented matrix with 2 rows and 4 columns

and the last column is a pivot column. Could the system of linear equations be consistent? Explain.

Exercise 1.4.24 Suppose the coefficient matrix of a system of n equations with n variables has the property

that every column is a pivot column. Does it follow that the system of equations must have a solution? If

so, must the solution be unique? Explain.

Exercise 1.4.25 Suppose there is a unique solution to a system of linear equations. What must be true of

the pivot columns in the augmented matrix?

Exercise 1.4.26 The steady state temperature, u, of a plate solves Laplace’s equation, ∆u = 0. One way

to approximate the solution is to divide the plate into a square mesh and require the temperature at each

node to equal the average of the temperature at the four adjacent nodes. In the following picture, the

numbers represent the observed temperature at the indicated nodes. Find the temperature at the interior

nodes, indicated by x, y, z, and w. One of the equations is z = 1
4(10+0+w+ x).

10

10

0

z

x

20

0

w

y

20

30

30

Exercise 1.4.27 Find the rank of the following matrices.

(a)




4 −16 −1 −5

1 −4 0 −1

1 −4 −1 −2


 (b)




3 6 5 12

1 2 2 5

1 2 1 2


 (c)




0 0 −1 0 3

1 4 1 0 −8

1 4 0 1 2

−1 −4 0 −1 −2




(d)




1 −2 0 3 11

1 −2 0 4 15

1 −2 0 3 11

0 0 0 0 0


 (e)




−2 −3 −2

1 1 1

1 0 1

−3 0 −3




Exercise 1.4.28 Suppose A is an m× n-matrix. Explain why the rank of A is always no larger than

min(m,n).
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Exercise 1.4.29 State whether each of the following sets of data is possible for a system of equations. If

possible, describe the solution set. That is, indicate whether there exists a unique solution, no solution or

infinitely many solutions. Here, A is the coefficient matrix, and [A | B] denotes the augmented matrix of the

system.

(a) A is a 5×6-matrix, rank(A) = 4 and rank [A | B] = 4.

(b) A is a 3×4-matrix, rank(A) = 3 and rank [A | B] = 2.

(c) A is a 4×2-matrix, rank(A) = 4 and rank [A | B] = 4.

(d) A is a 5×5-matrix, rank(A) = 4 and rank [A | B] = 5.

(e) A is a 4×2-matrix, rank(A) = 2 and rank [A | B] = 2.

Exercise 1.4.30 Consider the system −5x+2y− z = 0 and −5x−2y− z = 0. Both equations equal zero

and so −5x+ 2y− z = −5x− 2y− z which is equivalent to y = 0. Does it follow that x and z can equal

anything? Notice that when x = 1, z = −4, and y = 0 are plugged in to the equations, the equations do

not equal 0. Why?

1.5 Gauss-Jordan elimination

Outcomes

A. Find the reduced echelon form of a matrix.

B. Solve a system of linear equations using Gauss-Jordan elimination.

In the previous section, we saw how to solve a system of equations by using Gaussian elimination and

back substitution. The back substitution step can be quite confusing and error prone, especially when

there are parameters. For example, in Example 1.23, we had to substitute y = s, z = 2− t, and w = t into

the equation x = 3−2y+2z−2w, which required another simplification step.

In this section, you will learn an alternative procedure called Gauss-Jordan elimination which elimi-

nates the need for back substitution, at the expense of doing a few additional row operations. The key to

this technique is a special kind of echelon form called a reduced echelon form.

Definition 1.27: Reduced echelon form

An augmented matrix is in reduced echelon form if

1. It is in echelon form.

2. Each leading entry is equal to 1.

3. All entries above a leading entry are zero.
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Example 1.28: Reduced echelon form

The following augmented matrices are in reduced echelon form. The leading entries have been

circled for emphasis. Note how all of the leading entries are equal to 1, and they have zeros above

them.



1 2 0 5 0 3

0 0 1 2 0 0

0 0 0 0 1 1

0 0 0 0 0 0


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




,




1 0 0 4

0 1 0 3

0 0 1 2




We can carry every augmented matrix to reduced echelon form by doing elementary row operations.

Algorithm 1.29: Gauss-Jordan elimination

This algorithm provides a method for using row operations to take a matrix to its reduced echelon

form.

1. First, use Gaussian elimination (Algorithm 1.19) to reduce the matrix to echelon form.

2. Moving from right to left, consider each pivot entry. Without changing the row containing the

pivot entry, or any rows below it, use row operations to create zeros in the column above the

pivot entry. Finally, divide the row by its pivot entry, to make the pivot entry equal to 1.

Example 1.30: Gauss-Jordan elimination

Solve the system of equations from Example 1.20 using Gauss-Jordan elimination.

x+4y+3z = 11

2x+10y+7z = 27

x+ y+2z = 5.

Solution. In Example 1.20, we had already reduced the system to echelon form:




1 4 3 11

0 2 1 5

0 0 1 3


 .

We reduce it to reduced echelon form by performing the following row operations:




1 4 3 11

0 2 1 5

0 0 1 3




R2 ← R2−R3

R1 ← R1−3R3≃




1 4 0 2

0 2 0 2

0 0 1 3


R1 ← R1−2R2≃




1 0 0 −2

0 2 0 2

0 0 1 3


R2 ← 1

2 R2≃




1 0 0 −2

0 1 0 1

0 0 1 3


.

The resulting matrix is in reduced echelon form. Note that the final system of equations is especially easy

to solve, because the three equations are x =−2, y = 1, and z = 3. No back substitution is needed. ♠
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Example 1.31: Gauss-Jordan elimination

Solve the system of equations from Example 1.23 using Gauss-Jordan elimination.

x+2y−2z+2w = 3

x+2y− z+3w = 5

x+2y−3z+1w = 1.

Solution. In Example 1.23, we had obtained the following echelon form:



1 2 −2 2 3

0 0 1 1 2

0 0 0 0 0


 .

We reduce this to reduced echelon form by performing the following additional step:



1 2 −2 2 3

0 0 1 1 2

0 0 0 0 0


 R1 ← R1+2R2≃




1 2 0 4 7

0 0 1 1 2

0 0 0 0 0


 .

The first equation states that x = 7−2y−4w, and the second equation states that z = 2−w. Using the free

variables y and w as parameters, we obtain the following general solution:

x = 7−2y−4w

y = y

z = 2−w

w = w.

Note that we did not really have to do back substitution; all we had to do is to shift parts of the equations to

the right-hand side. If the solution looks strange, because it has equations like “y = y” in it, keep in mind

that this means that y and w are arbitrary numbers, i.e., parameters. We can replace y and w by parameters

s and t on the right-hand side, as before:

x = 7−2s−4t

y = s

z = 2− t

w = t.

♠

Discussion 1.32: Which procedure is better?

Which one is the better procedure to use, Gaussian elimination with back substitution, or Gauss-

Jordan elimination? The answer is: it depends. In certain applications, it is not necessary to com-

pletely solve a system of equations. Sometimes it is sufficient just to figure out whether the system

is consistent or inconsistent, or whether the solution is unique or not. In those situations, you al-

ready get the required information from the echelon form and there is no need to do the additional

steps to reduce the system to reduced echelon form. Also, in some situations, Gauss-Jordan elimi-

nation can introduce fractions into your augmented matrix, making the matrix more complicated to

work with. In such cases, it may sometimes be easier to do back substitution. But in most cases,

Gauss-Jordan elimination is simpler to do than back substitution, and therefore I recommend using

the Gauss-Jordan method most of the time.
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One situation where Gauss-Jordan elimination excels is when you have to solve many systems of equations

that all have the same coefficient matrix.

Example 1.33: Multiple systems sharing the same left-hand side

Solve the following two systems of equations.

x+ z = 1

2x+ y+3z = 2

3x+2y+5z = 4

x+ z = 2

2x+ y+3z = 5

3x+2y+5z = 8

Solution. We could certainly solve each system of equations separately. But since the left-hand sides are

the same, we will perform exactly the same row operations on both systems. We can save some work by

solving both systems together. Instead of a usual augmented matrix with only one constant vector, we

create an augmented matrix containing both constant vectors at the same time.




1 0 1 1 2

2 1 3 2 5

3 2 5 4 8




Then we row-reduce the coefficient matrix to reduced echelon form as usual. (We do not need to bother

reducing the right-hand side to reduced echelon form).




1 0 1 1 2

2 1 3 2 5

3 2 5 4 8




R2 ← R2−2R1

R3 ← R3−3R1≃




1 0 1 1 2

0 1 1 0 1

0 2 2 1 2


 R3 ← R3−2R2≃




1 0 1 1 2

0 1 1 0 1

0 0 0 1 0


 .

We see that the first system is inconsistent, because it contains a row of the form [0 0 0 | 1]. The second

system is consistent, and we get the general solution z = t, y = 1− t, x = 2− t. ♠

Exercises

Exercise 1.5.1 Determine which matrices are in reduced echelon form.

(a)

[
1 2 0

0 1 7

]

(b)




1 0 0 0

0 0 1 2

0 0 0 0




(c)




1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3



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Exercise 1.5.2 Reduce each of the matrices from Exercise 1.4.15 to reduced echelon form.

Exercise 1.5.3 Use Gauss-Jordan elimination to solve the system of equations−8x+2y+5z = 18,−8x+
3y+5z = 13, and −4x+ y+5z = 19.

Exercise 1.5.4 Use Gauss-Jordan elimination to solve the system of equations 3x−y−2z = 3, y−4z = 0,

and −2x+ y =−2.

Exercise 1.5.5 Use Gauss-Jordan elimination to solve the system of equations −9x+15y = 66,−11x+
18y = 79, −x+ y = 4, and z = 3.

Exercise 1.5.6 Use Gauss-Jordan elimination to solve the system of equations−19x+8y=−108,−71x+
30y =−404, −2x+ y =−12, 4x+ z = 14.

Exercise 1.5.7 Solve the following two systems of equations simultaneously, by using a single augmented

matrix with two constant vectors.

x+2y− z = 0

2x+3y+ z = 3

x− y+2z = 3

x+2y− z = 1

2x+3y+ z = 7

x− y+2z = 4

1.6 Homogeneous systems

Outcomes

A. Determine whether a homogeneous system of equations has non-trivial solutions from its

rank.

B. Find the basic solutions of a homogeneous system of equations.

C. Understand the relationship between the general solution of a system of equations and that of

its associated homogeneous system.

There is a special type of system of linear equations that requires additional study. This type of system is

called a homogeneous2 system of equations. Our focus in this section is to consider what types of solutions

are possible for a homogeneous system of equations, and how the solutions of non-homogeneous systems

are related to those of their homogeneous counterparts.

2The word “homogeneous” has 5 syllables. In scientific usage, it is not the same as the word “homogenous”.
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Definition 1.34: Homogeneous system of equations

A system of equations is called homogeneous if each of the constant terms is equal to 0. A homo-

geneous system therefore has the form

a11x1 +a12x2 + . . .+a1nxn = 0

a21x1 +a22x2 + . . .+a2nxn = 0
...

am1x1 +am2x2 + . . .+amnxn = 0,

where ai j are coefficients and x j are variables.

The first thing we note is that a homogeneous system is always consistent. Indeed, it always has the

solution x1 = 0, x2 = 0, . . ., xn = 0. This solution is called the trivial solution.

If the system has a solution in which not all of the x1, . . . ,xn are equal to zero, then we call this solution

non-trivial. When working with homogeneous systems of equations, since the trivial solution always

exists, we are usually interested in finding whether there are non-trivial solutions.

The following theorem is a special case of Theorem 1.26. Recall that the rank of a system is the

number of pivot variables in its echelon form.

Theorem 1.35: Rank and solutions of homogeneous system of equations

Consider a homogeneous system of m equations in n variables, and assume that the coefficient

matrix has rank r. Then the system is consistent, and

1. if r = n, then the system has only the trivial solution;

2. if r < n, then the system has infinitely many solutions.

Example 1.36: Homogeneous system with more variables than equations

True or false: Suppose a homogeneous system has more variables than equations. Then the system

has infinitely many solutions.

Solution. This is true. If the system has m equations and n variables, then the rank can be at most m. Since

m < n, the system has infinitely many solutions. Note that it is not possible for a homogeneous system to

be inconsistent, since there is always the trivial solution. ♠

Example 1.37: Homogeneous system with an equal number of variables and equations

True or false: Suppose a homogeneous system has the same number of variables as equations. Then

the system has a unique solution.

Solution. This is false in general. While it is possible for such a system to have a unique solution, it is also

possible for it to have infinitely many. Let there be n equations and n variables. Then depending on the
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echelon form, the rank r could be either equal to n, in which case there is a unique solution, or less than n,

in which case there are infinitely many. ♠

We now consider an example of solving a homogeneous system of equations.

Example 1.38: Solutions to a homogeneous system of equations

Find the general solution to the following homogeneous system of equations. Does the system have

non-trivial solutions?
2x+ y+ z+4w = 0

x+2y− z+5w = 0

Solution. Notice that this system has m = 2 equations and n = 4 variables, so n > m. Therefore by our

previous discussion, we expect this system to have infinitely many solutions. In particular, it will have

non-trivial solutions.

The process we use to find the solutions for a homogeneous system of equations is the same process

we used for non-homogeneous equations. We construct the augmented matrix and reduce it to reduced

echelon form. [
2 1 1 4 0

1 2 −1 5 0

]
≃
[

1 0 1 1 0

0 1 −1 2 0

]

The corresponding system of equations is

x+ z+w = 0

y− z+2w = 0.

The free variables are z and w. We set them equal to parameters z = s and w = t. Then our general solution

has the form
x =−s− t

y = s−2t

z = s

w = t.

Hence this system has infinitely many solutions, with two parameters s and t. ♠

Let us write the solution of the last example in another form. Specifically, it can be written as




x

y

z

w


= s




−1

1

1

0


+ t




−1

−2

0

1


 . (1.9)

Notice that we have constructed a column from the coefficients of s in each equation, and another column

from the coefficients of t. We will discuss this notation more in later chapters. For now, consider what

happens when we choose the parameters to be s = 1 and t = 0. In this case, we get the solution




−1

1

1

0


 , (1.10)
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which is the same as the column of coefficients for s. This is called a basic solution of the homogeneous

system of equations. The other basic solution is obtained by setting s = 0 and t = 1. In this case,




−1

−2

0

1


 . (1.11)

The basic solutions of a system are columns constructed from the coefficients on parameters in the solution.

If X1 and X2 are the basic solutions (1.10) and (1.11), then the general solution (1.9) is of the form sX1 +
tX2. We say that the general solution of the homogeneous system is a linear combination of its basic

solutions.

We explore this further in the following example.

Example 1.39: Basic solutions of a homogeneous system

Consider the following homogeneous system of equations.

x+4y+3z = 0

3x+12y+9z = 0.
(1.12)

Find the basic solutions to this system.

Solution. The augmented matrix of this system and the resulting reduced echelon form are

[
1 4 3 0

3 12 9 0

]
≃
[

1 4 3 0

0 0 0 0

]
.

When written in equations, this system is given by

x+4y+3z = 0.

Notice that x is the only pivot variable, and y and z are free variables. Let y = s and z = t for parameters s

and t. Then the general solution is
x =−4s−3t

y = s

z = t,

which can be written as 


x

y

z


= s



−4

1

0


+ t



−3

0

1


 .

You can see here that we have two columns of coefficients corresponding to parameters, specifically one

for s and one for t. Therefore, this system has two basic solutions! They are

X1 =



−4

1

0


 , X2 =



−3

0

1


 .
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♠

We can take any non-homogeneous system of equations and get a new homogeneous system by keeping

the left-hand sides the same and setting all of the constant terms equal to 0. This is called the associated

homogeneous system of the system of equations. We end this section by investigating how the solutions

of a system of equations are related to the solutions of its associated homogeneous system.

Example 1.40: Non-homogeneous vs. homogeneous system

Solve the system of equations
x+4y+3z = 2

3x+12y+9z = 6.
(1.13)

How are the solutions related to those of the associated homogeneous system in Example 1.39?

Solution. We note that the associated homogeneous system of (1.13) is the system we saw in Exam-

ple 1.39. We solve the system (1.13) in the usual way by reducing its augmented matrix to reduced

echelon form [
1 4 3 2

3 12 9 6

]
≃
[

1 4 3 2

0 0 0 0

]

and then assigning parameters y = s, z = t to the free variables. From the equation x+ 4y+ 3z = 2, the

general solution is
x = 2−4s−3t

y = s

z = t,

which can be written as 


x

y

z


=




2

0

0


+ s



−4

1

0


+ t



−3

0

1


 . (1.14)

We see that the general solution is almost exactly the same as that of the homogeneous system in Exam-

ple 1.39. The only difference is the additional column



2

0

0


 (1.15)

♠

Note that the column (1.15), by itself, is a solution of the non-homogeneous system. It is not the most

general solution, but rather the particular solution resulting from the parameters s = 0 and t = 0. We can

therefore interpret equation (1.14) as saying that the general solution of the non-homogeneous system is

equal to a particular solution of the non-homogeneous system, plus the general solution of the associated

homogeneous system. The same is true in general, and we summarize it as a theorem.

Theorem 1.41: Non-homogeneous vs. homogeneous system

Let A be a system of equations, and let B be the associated homogeneous system. Then

the general solution of A = a particular solution of A+ the general solution of B.
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Exercises

Exercise 1.6.1 Find the basic solutions of each of the following homogeneous systems of equations.

(a)
2x+3y+4z = 0

x−2y+ z = 0

4x− y+6z = 0

(b)
x− y+ z = 0

−x−2y−4z = 0

2x+ y+5z = 0

(c)
x+ y− z+2w = 0

x+3y+ z+6w = 0

x+2y+4w = 0

Exercise 1.6.2 Which of the following homogeneous systems of linear equations have non-trivial solu-

tions?

(a) 4 equations in 3 variables, rank 3.

(b) 3 equations in 4 variables, rank 3.

(c) 4 equations in 3 variables, rank 2.

(d) 3 equations in 4 variables, rank 2.

Exercise 1.6.3 My system of equations has a solution (x,y,z) = (1,2,4). The associated homogeneous

system has basic solutions (x,y,z) = (1,0,1) and (x,y,z) = (0,1,−1). What is the general solution of my

system of equations?

1.7 Uniqueness of the reduced echelon form

Outcomes

A. Determine whether two systems of equations are row equivalent, by comparing their reduced

echelon form.

B. For two homogeneous systems of equations that are not row equivalent, find a solution to one

system that is not a solution to the other.

We have seen in earlier sections that every matrix can be brought into reduced echelon form by a sequence

of elementary row operations. Here we will prove that the resulting matrix is unique; in other words, the

resulting matrix in reduced echelon form does not depend upon the particular sequence of elementary row

operations or the order in which they were performed.

Let A be the augmented matrix of a homogeneous system of linear equations in the variables x1,x2, . . . ,xn

which is also in reduced echelon form. Recall that the matrix A divides the set of variables in two different

types: xi is a pivot variable when column i is a pivot column, and a free variable otherwise.
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Example 1.42: Pivot and free variables

Find the pivot and free variables in the following system, and find the general solution.

x+2y− z+w = 0

x+ y− z+w = 0

x+3y− z+w = 0

Solution. The reduced echelon form of the augmented matrix is




1 0 −1 1 0

0 1 0 0 0

0 0 0 0 0


 .

From this, we see that columns 1 and 2 are pivot columns. Therefore, x and y are pivot variables and z and

w are free variables. We can write the solution to this system as

x = s− t

y = 0

z = s

w = t.

♠

In general, all solutions can be written in terms of the free variables. In such a description, the free

variables are written as parameters, while the pivot variables are written as functions of these parameters.

Indeed, a pivot variable xi is a function of only those free variables x j with j > i. This leads to the following

observation.

Proposition 1.43: Pivot and free variables

If xi is a pivot variable of a homogeneous system of linear equations, then any solution of the system

with x j = 0 for all those free variables x j with j > i must also have xi = 0.

Using this proposition, we prove a lemma which will be used in the proof of the main result of this section.

Lemma 1.44: Solutions and the reduced echelon form of a matrix

Let A and B be two augmented matrices for two homogeneous systems of m equations in n variables,

such that A and B are each in reduced echelon form. If A and B are different, then the two systems

do not have exactly the same solutions.

Proof. With respect to the linear systems associated with the matrices A and B, there are two cases to

consider:

• Case 1: the two systems have the same pivot variables

• Case 2: the two systems do not have the same pivot variables
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In case 1, the two matrices will have exactly the same pivot positions. However, since A and B are not

identical, there is some row of A which is different from the corresponding row of B and yet the rows each

have a pivot in the same column position. Let i be the index of this column position. Since the matrices

are in reduced echelon form, the two rows must differ at some entry in a column j > i. Let these entries be

a in A and b in B, where a 6= b. Since A is in reduced echelon form, if x j were a pivot variable for its linear

system, we would have a = 0. Similarly, if x j were a pivot variable for the linear system of the matrix B,

we would have b = 0. Since a and b are unequal, they cannot both be equal to 0, and hence x j cannot be a

pivot variable for both linear systems. However, since the systems have the same pivot variables, x j must

then be a free variable for each system. We now look at the solutions of the systems in which x j is set

equal to 1 and all other free variables are set equal to 0. For this choice of parameters, the solution of the

system for matrix A has xi = −a, while the solution of the system for matrix B has xi = −b, so that the

two systems have different solutions.

In case 2, there is a variable xi which is a pivot variable for one matrix, let’s say A, and a free variable

for the other matrix B. The system for matrix B has a solution in which xi = 1 and x j = 0 for all other free

variables x j. However, by Proposition 1.43 this cannot be a solution of the system for the matrix A. This

completes the proof of case 2. ♠

Now, we say that the matrix B is row equivalent to the matrix A if B can be obtained from A by performing

a sequence of elementary row operations. By Theorem 1.11, we know that row equivalent systems have

exactly the same solutions. Now, we can use Lemma 1.44 to prove the main result of this section, which

is that each matrix A has a unique reduced echelon form.

Theorem 1.45: Uniqueness of the reduced echelon form

Every matrix A is row equivalent to a unique matrix in reduced echelon form.

Proof. By Gauss-Jordan elimination, we already know that every matrix is row equivalent to some reduced

echelon form. What we must show is that the resulting reduced echelon form is unique, i.e., does not

depend on the order in which row operations are performed.

Therefore, let A be an m× n-matrix and let B and C be matrices in reduced echelon form, each row

equivalent to A. We have to show that B =C.

Let A+ be the matrix A augmented with a new rightmost column consisting entirely of zeros. Similarly,

augment matrices B and C each with a rightmost column of zeros to obtain B+ and C+. Note that B+ and

C+ are augmented matrices in reduced echelon form, and that both B+ and C+ are row equivalent to A+,

because the addition of a column of zeros does not change the effect of any row operations.

Now, A+, B+, and C+ can all be considered as augmented matrices of homogeneous linear systems

in the variables x1,x2, . . . ,xn. Because all three systems are row equivalent, they have exactly the same

solutions. By Lemma 1.44, we conclude that B+ =C+. Omitting the final column of zeros, we must also

have B =C. ♠
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Example 1.46: Row equivalent systems

Determine whether the following two systems of equations are row equivalent.

2x+3y+ z = 12

x−2y+4z = −1

x+2z = 3,

x+2y = 7

3x− y+7z = 7

y− z = 2.

Solution. The augmented matrices for the two systems are:




2 3 1 12

1 −2 4 −1

1 0 2 3


 ,




1 2 0 7

3 −1 7 7

0 1 −1 2


 .

The reduced echelon forms of the two augmented matrices are:




1 0 2 3

0 1 −1 2

0 0 0 0


 ,




1 0 2 3

0 1 −1 2

0 0 0 0


 .

Since both systems have the same reduced echelon form, they are row equivalent. ♠

Example 1.47: Non-row equivalent systems

Determine whether the following two systems of equations are row equivalent. If they are not row

equivalent, find a solution to one system that is not a solution to the other.

x−2y−5z = 0

x+ z = 0

x+ y+4z = 0,

2x+2y+ z = 0

x+ y+3z = 0

−x− y+2z = 0.

Solution. The augmented matrices for the two systems are:




1 −2 −5 0

1 0 1 0

1 1 4 0


 ,




2 2 1 0

1 1 3 0

−1 −1 2 0


 .

The reduced echelon forms of the two augmented matrices are:




1 0 1 0

0 1 3 0

0 0 0 0


 ,




1 1 0 0

0 0 1 0

0 0 0 0


 .

Since the two systems have different reduced echelon forms, they are not row equivalent. Following the

proof of Lemma 1.44, we see that z is a free variable for the first system, but a pivot variable for the second

system. Therefore, there exists a solution of the first system with z = 1, namely (x,y,z) = (−1,−3,1). But

there exists no solution for the second system with z = 1, and in particular, (x,y,z) = (−1,−3,1) is not a

solution of the second system. ♠
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We finish this section by pointing out an important consequence of Theorem 1.45, namely that the rank of

a matrix is well-defined. Recall that in Definition 1.24, we defined the rank of a matrix A to be the number

of pivot entries of “any” echelon form of A. It was not clear, however, why different echelon forms of A

could not have different numbers of pivot entries. Now we can answer this question. By the Gauss-Jordan

algorithm, we know that every echelon form can be converted to a reduced echelon form without changing

the number or position of the pivots. Since the reduced echelon form is unique, it follows that all echelon

forms of A have the same number of pivot entries (and in fact the same pivot columns). Therefore, the

rank of A is a well-defined quantity.

Exercises

Exercise 1.7.1 The following are augmented matrices for four systems of equations. Determine which of

them, if any, are row equivalent.




1 3 5 1 12

−1 1 −1 2 5

2 0 4 −2 0







1 2 4 −1 8

2 4 3 1 15

3 6 1 −1 8







3 6 −3 1 6

2 4 2 1 13

0 0 1 0 2







1 2 4 1 10

0 1 1 1 5

2 1 5 0 8




Exercise 1.7.2 Find a tuple (x,y,z) that is a solution to one system of equations but not the other.




1 0 1 5 0

2 1 4 3 0

3 1 5 9 0







1 0 3 6 0

2 1 8 2 0

2 0 6 13 0




1.8 Fields

Outcomes

A. Solve systems of equations using scalars from a field other than the real numbers, such as Z2

or Z5.

So far in this chapter, we have worked with real numbers: all of the scalars we used, for coefficients,

constant terms, variables, and parameters, were real numbers. But in fact, we have not used very many

properties of the real numbers, except for the fact that we can add, subtract, multiply, and divide them. For

example, we have never needed to take a square root or to compute a trigonometric function.

In fact, most of linear algebra only requires addition, subtraction, multiplication, and division. This

opens the door to doing linear algebra using other kinds of scalars besides the real numbers. For example,

we can do linear algebra over the rational numbers, complex numbers, or even over some more exotic
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number systems that you will learn about in this section. A system of scalars that one can do linear

algebra with is called a field.

Definition 1.48: Field

A field is a set K, together with two operations called addition and multiplication, and together

with two distinct elements 0 and 1, such that addition and multiplication satisfy the following prop-

erties:

(A1) Commutative law of addition: a+b = b+a;

(A2) Associative law of addition: (a+b)+ c = a+(b+ c);

(A3) Unit law of addition: 0+a = a;

(A4) Additive inverse: for each a ∈ K, there exists an element (−a) ∈ K such that a+(−a) = 0;

(M1) Commutative law of multiplication: ab = ba;

(M2) Associative law of multiplication: (ab)c = a(bc);

(M3) Unit law of multiplication: 1a = a;

(M4) Multiplicative inverse: for each non-zero a ∈ K, there exists an element a−1 ∈ K such that

aa−1 = 1;

(D) Distributive law: a(b+ c) = ab+ac.

Properties (A1)–(A4) are about addition, properties (M1)–(M4) are about multiplication, and property (D)

is about both addition and multiplication. Here are some examples and non-examples of fields:

Example 1.49: Some fields and some non-fields

(a) The set R of real numbers is a field.

(b) The set Q of rational numbers is a field.

(c) The set Z of integers satisfies all field properties except for (M4). It is therefore not a field.

(d) The set N= {0,1,2, . . .} of natural numbers satisfies all field properties except (A4) and (M4).

It is therefore not a field.

A field doesn’t have to be infinite. The following is an example of a field with only two elements.
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Example 1.50: The integers modulo 2

Consider the set of bits (binary digits) {0,1}. We can multiply them as usual, and add them almost

as usual, subject to the alternative rule 1+1 = 0 (instead of 1+1 = 2). Here is a summary of the

rules for addition and multiplication:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

This particular alternative arithmetic is called “arithmetic modulo 2”. In computer science, the

addition is also called the “logical exclusive or” operation, and multiplication is also called the

“logical and” operation. You can also think of 0 as “even” and 1 as “odd”, and not that odd plus

odd makes even. For example, we can calculate like this:

1 · ((1+0)+1)+1 = 1 · (1+1)+1

= 1 ·0+1

= 0+1

= 1.

The binary digits form a field Z2 = {0,1}, also called the field of integers modulo 2.

You can convince yourself that the 9 properties of fields are all satisfied by the integers modulo 2. This

is a bit tedious, but it can be checked by calculations. For example, to verify (A1), we have to check that

0+0 = 0+0, 0+1 = 1+0, 1+0 = 0+1, and 1+1 = 1+1. Perhaps the most interesting properties are

(A4) and (M4). For (A4), we can set (−0) = 0 and (−1) = 1. It may be surprising that (−1) = 1, but

you can check for yourself that 1+(−1) = 1+1 = 0 when calculating modulo 2. For (M4), we can set

1−1 = 1.

When solving systems of linear equations, we only used addition, subtraction, multiplication, and

division. Therefore, we can solve systems of equations using the elements of any field as the scalars,

instead of the real numbers.

Example 1.51: Solving a system of equations over Z2

Solve the following system in the integers modulo 2:

x+ y = 0

x+ z = 1

y+ z = 1.

Solution. As usual, we write the augmented matrix of the system of equations, then reduce it to reduced

echelon form using elementary row operations. The only difference is that we will perform all arithmetic

operations modulo 2, rather than in the real numbers. The augmented matrix is:




1 1 0 0

1 0 1 1

0 1 1 1


 .
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The first pivot entry is the 1 in the upper left. We use a row operation to create a zero below it. Note that,

because we are working modulo 2, adding 1 and subtracting 1 is the same thing, so 0−1 = 1.




1 1 0 0

1 0 1 1

0 1 1 1


 R2 ← R2−R1≃




1 1 0 0

0 1 1 1

0 1 1 1


 .

The next pivot entry is in row 2 and column 2. We create a zero below it by subtracting row 2 from row 3,

and a zero above it by subtracting row 2 from row 1:




1 1 0 0

0 1 1 1

0 1 1 1


 R3 ← R3−R2≃




1 1 0 0

0 1 1 1

0 0 0 0


 R1 ← R1−R2≃




1 0 1 1

0 1 1 1

0 0 0 0


 .

The resulting system is in reduced echelon form. We can see that the system is consistent, because there is

no row whose left-hand side is zero and whose right-hand side is non-zero. We also see that there are two

pivot columns, and therefore two pivot variables, x and y. On the other hand, z is a free variable, so we set

it equal to a parameter: z = t. Notice that this time, the parameter t is not a real number, but an element

of Z2. From the equation x+ z = 1, we get x = 1− z = 1+ t. Can you guess why I have written 1+ t

instead of 1− t? This is because (−1) = 1 in the integers modulo 2. So 1− t = 1+(−1)t = 1+1t = 1+ t.

Similarly, from the equation y+ z = 1, we get that y = 1+ t. Therefore, the general solution to the system

of equations is
x = 1+ t

y = 1+ t

z = t,

where t ∈ {0,1} is an arbitrary parameter. Recall that this means that each time we plug in a particular

value for t, we get a solution.

There is one difference between solving equations in the real numbers and solving equations in Z2.

In the real numbers, a system of equations has either no solution, a unique solution, or infinitely many

solutions. This is because when there is a parameter, we automatically get infinitely many solutions. By

contrast, in Z2, there are only two scalars, and therefore only two possible values for the parameter t,

namely t = 0 and t = 1. For t = 0 we get the solution (x,y,z) = (1,1,0), and for t = 1 we get the solution

(x,y,z) = (0,0,1). Thus, when the general solution has one parameter in Z2, there are only two solutions,

instead of infinitely many. ♠
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Example 1.52: A game with buttons and lights

Consider a game with 9 lights arranged in a square:

Each light is also a button. When a button is pressed, its own light, and all the lights neighboring it

(i.e., above, below, to the left and to the right) are toggled (i.e., any light that was off is turned on

and vice versa). Figure out which buttons to press to turn off all the lights if the starting position is

as shown above.

Solution. We number the lights and buttons from top to bottom, left to right, like this:

1 2 3

4 5 6

7 8 9

.

Let xi be a variable in Z2, corresponding to the event “button i is pressed” (or more precisely, “button i is

pressed an odd number of times”, because pressing a button twice is the same as not pressing it at all. That

is why we are working modulo 2). The light in position 1 is initially on. It is toggled each time buttons 1,

2, and 4 are pressed, i.e., it is toggled x1 + x2 + x4 times. We want this light to be off in the end. So we

must have 1+ x1 + x2 + x4 = 0. Similarly, the light in position 2 is initially off. To ensure that it stays off,

we must have 0+ x1 + x2 + x3 + x5 = 0. In this way, we obtain 9 linear equations in 9 variables:

1 + x1 + x2 + x4 = 0

0 + x1 + x2 + x3 + x5 = 0

1 + x2 + x3 + x6 = 0

0 + x1 + x4 + x5 + x7 = 0

1 + x2 + x4 + x5 + x6 + x8 = 0

0 + x3 + x5 + x6 + x9 = 0

0 + x4 + x7 + x8 = 0

0 + x5 + x7 + x8 + x9 = 0

1 + x6 + x8 + x9 = 0.

If we write this system in standard form, we obtain the following augmented matrix:



1 1 0 1 0 0 0 0 0 1

1 1 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 0 1

1 0 0 1 1 0 1 0 0 0

0 1 0 1 1 1 0 1 0 1

0 0 1 0 1 1 0 0 1 0

0 0 0 1 0 0 1 1 0 0

0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 1 0 1 1 1




.
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We solve this system of equations by doing Gauss-Jordan elimination with scalars in Z2. The reduced

echelon form is 


1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 0




.

The unique solution is (x1,x2,x3,x4,x5,x6,x7,x8,x9)= (0,0,1,1,1,0,0,1,0). This means that we must press

buttons 3, 4, 5, and 8. ♠

Example 1.53: The integers modulo 5

Consider the set Z5 = {0,1,2,3,4}, called the integers modulo 5. We define their addition and mul-

tiplication by computing the usual addition and multiplication, then “reducing” the answer modulo

5. Here, “reducing” a number means repeatedly subtracting 5 until the answer is between 0 and 4.

Imagine a clock showing 5 numbers instead of the usual 12:

0

1

2

4

3

If we want to calculate 3 o’clock plus 4 hours, we get 2 o’clock, because whenever the clock reaches

5, it resets to 0. This is how addition and multiplication modulo 5 are defined:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

We note that the integers modulo 5 form a field. Most of the properties are tedious but easy to verify.

Perhaps the most interesting of the field properties is (M4). It says that for each non-zero element a, there

is another element a−1 such that aa−1 = 1. By looking at the multiplication table, we see that 1 · 1 = 1,

2 ·3 = 1, 3 ·2 = 1, and 4 ·4 = 1. Therefore we can set 1−1 = 1, 2−1 = 3, 3−1 = 2, and 4−1 = 4.

Example 1.54: Division in Z5

What is 2 divided by 3 in Z5?
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Solution. There are no fractions in Z5. The key to dividing is this: instead of dividing by a, multiply by

a−1. So we have:

2/3 = 2 ·3−1 = 2 ·2 = 4.

So 2 divided by 3 equals 4. This makes sense, because 4 times 3 equals 2, when calculating modulo 5.

♠

Example 1.55: Solving a system of equations over Z5

Solve the following system of linear equations over Z5:

2x+ z = 1

x+4y+ z = 3

x+2y+3z = 2.

Solution. We perform the usual Gauss-Jordan algorithm on the augmented matrix. The only thing to keep

in mind is that, instead of dividing a row by a, we should multiply it by a−1. And of course, we should

reduce all intermediate results modulo 5. For example, to change the first pivot entry from 2 to 1, we

multiply by 2−1 = 3, instead of dividing by 2.




2 0 1 1

1 4 1 3

1 2 3 2


 R1 ← 3R1≃




1 0 3 3

1 4 1 3

1 2 3 2




R2 ← R2−R1

R3 ← R3−R1≃




1 0 3 3

0 4 3 0

0 2 0 4


 R2 ← 4R2≃




1 0 3 3

0 1 2 0

0 2 0 4




R3 ← R3−2R2≃




1 0 3 3

0 1 2 0

0 0 1 4




R1 ← R1−3R3

R2 ← R2−2R3≃




1 0 0 1

0 1 0 2

0 0 1 4


 .

The final matrix is in reduced echelon form, and we see that the system has the unique solution (x,y,z) =
(1,2,4). Please double-check the solution with respect to the original equations. ♠

Example 1.56: The integers modulo 6 are not a field

Do the integers modulo 6 form a field?

Solution. The integers modulo 6 are the set Z6 = {0,1,2,3,4,5}, with the addition and multiplication

modulo 6:
+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Then Z6 satisfies all of the field axioms except (M4). To see why (M4) fails, let a = 2, and note, by looking

at the multiplication table, that there is no b ∈ Z6 such that ab = 1. Therefore, Z6 is not a field. ♠



1.8. Fields 49

We conclude this section with a fact that we will not prove.

Theorem 1.57: The integers modulo a prime

Let n be a positive integer. Then the set Zn = {0, . . . ,n−1} of integers modulo n, with addition and

multiplication modulo n, forms a field if and only if n is prime. Thus, for example, Z2, Z3, Z5, Z7,

and Z11 are fields, whereas Z4, Z6, and Z9 are not.

Another field that is very useful in mathematics and the natural sciences is the field C of complex num-

bers. You can read about the complex numbers in Appendix A.

Example 1.58: Solving a system of equations over C

Solve the following system of equations over the complex numbers:

x− y+ z = −1+ i,

x+ iy+3z = 1+3i.

Solution. We perform Gauss-Jordan elimination on the augmented matrix. When multiplying or dividing,

we have to use complex number arithmetic. For example,

2

1+ i
=

2

1+ i
· 1− i

1− i
=

2−2i

2
= 1− i.

The row operations are:
[

1 −1 1 −1+ i

1 i 3 1+3i

]
R2 ← R2−R1≃

[
1 −1 1 −1+ i

0 1+ i 2 2+2i

]
R2 ← R2/(1+i)

≃
[

1 −1 1 −1+ i

0 1 1− i 2

]

R1 ← R1+R2≃
[

1 0 2− i 1+ i

0 1 1− i 2

]
.

Therefore the general solution is z = t, y = 2− (1− i)t, x = 1+ i− (2− i)t, where t ∈ C is a parameter,

i.e., t is any complex number. In vector form, the general solution is



x

y

z


=




1+ i

2

0


+ t



−2+ i

−1+ i

1


 .

♠

Exercises

Exercise 1.8.1 Solve each of the following systems of equations with scalars in Z2. If there is more

than one solution, write the general solution in parametric form and also write down all of the solutions

individually. How many solutions are there?
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(a)




0 1 1 1 0

1 0 0 1 1

1 1 1 0 1


 (b)




0 1 1 1

1 0 1 1

1 1 0 1


 (c)




0 1 1 0 1

1 0 1 0 0

1 1 0 1 0


 (d)




0 1 1 1

1 0 1 1

1 1 1 0




Exercise 1.8.2 Solve each of the following systems of equations with scalars in Z3. How many solutions

does each system have?

(a)




0 1 1 1

1 2 0 1

2 0 2 1


 (b)




2 1 2 1 0

0 2 1 1 2

1 0 0 1 1


 (c)




1 2 0 2

1 0 1 1

1 1 1 0




Exercise 1.8.3 Solve each of the following systems of equations with scalars in Z5.

(a)




0 2 1 4 0

1 1 2 3 2

2 4 0 0 4


 (b)




1 2 4 1

3 0 1 1

2 4 3 2




Exercise 1.8.4 In Z7, calculate 1−1, 2−1, 3−1, 4−1, 5−1, and 6−1. Hint: write down the multiplication

table.

Exercise 1.8.5 Consider a game similar to Example 1.52, with 6 lights arranged in a rectangle:

Again, each light doubles as a button. Pressing it toggles its own light, as well as all of its neighbors.

Which buttons do you have to press to turn off all the light from the starting position shown above? Is the

answer unique? Is every pattern of lights reachable from this starting position?

Exercise 1.8.6 Solve each of the following systems of equations with scalars in the complex numbers.

(a)

[
1 1 1+ i 2

1+ i 2+ i 3i 3+2i

]
(b)




1 i 1+ i −1+2i

1+ i 2 1− i 4+4i

1 −1+ i −i 0



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1.9 Application: Balancing chemical reactions

The tools of linear algebra can also be used in the subject area of Chemistry, specifically for balancing

chemical reactions. Consider the chemical reaction

SnO2 +H2→ Sn+H2O.

Here the elements involved are tin (Sn), oxygen (O), and hydrogen (H). A chemical reaction occurs that

transforms a combination of tin dioxide (SnO2) and hydrogen (H2) into a combination of tin (Sn) and

water (H2O). When considering chemical reactions, we want to investigate how much of each substance

we began with and how much of each substance is involved in the result.

An important theory we will use here is the mass balance theory. It tells us that we cannot create

or delete elements within a chemical reaction. For example, in the above expression, we must have the

same number of atoms of oxygen, tin, and hydrogen on both sides of the reaction. Notice that this is not

currently the case. For example, there are two oxygen atoms on the left and only one on the right. In order

to fix this, we want to find numbers x,y,z,w such that

x SnO2 + y H2→ z Sn+w H2O,

where both sides of the reaction have the same number of atoms of the various elements.

This is a familiar problem. We can solve it by setting up a system of equations in the variables x,y,z,w.

Thus we need
Sn : x = z

O : 2x = w

H : 2y = 2w.

We can rewrite these equations as
Sn : x− z = 0

O : 2x−w = 0

H : 2y−2w = 0.

The augmented matrix for this system of equations is given by



1 0 −1 0 0

2 0 0 −1 0

0 2 0 −2 0


 .

The reduced echelon form of this matrix is



1 0 0 −1
2 0

0 1 0 −1 0

0 0 1 −1
2 0


 ,

and the solution is given in parametric form as

x = 1
2t

y = t

z = 1
2t

w = t.



52 Systems of linear equations

For example, let t = 2 and this would yield x = 1, y = 2, z = 1, and w = 2. We can put these values back

into the expression for the reaction which yields

SnO2+2H2→ Sn+2H2O.

Observe that each side of the expression contains the same number of atoms of each element. This means

that the chemical reaction is balanced. Of course, because it is a homogeneous system of equations, any

multiple of a solution is also a solution. For example,

2SnO2 +4H2→ 2Sn+4H2O

is also correct. It just means that we have just doubled the amount of every substance involved. In

chemistry, the numbers you are finding would typically be the number of mols of the molecules on each

side. Thus one mol of SnO2 added two mols of H2 yields one mol of Sn and two mols of H2O.

Here is another example.

Example 1.59: Balancing a chemical reaction

Potassium is denoted by K, oxygen by O, phosphorus by P and hydrogen by H. Consider the

reaction given by

KOH +H3PO4→ K3PO4 +H2O.

Balance this chemical reaction.

Solution. We will use the same procedure as above to solve this problem. We need to find values for

x,y,z,w such that

x KOH + y H3PO4→ z K3PO4 +w H2O.

preserves the total number of atoms of each element. Finding these values can be done by finding the

solution to the following system of equations.

K : x = 3z

O : x+4y = 4z+w

H : x+3y = 2w

P : y = z.

The augmented matrix for this system is




1 0 −3 0 0

1 4 −4 −1 0

1 3 0 −2 0

0 1 −1 0 0


 ,

and the reduced echelon form is 


1 0 0 −1 0

0 1 0 −1
3 0

0 0 1 −1
3 0

0 0 0 0 0


 .
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The general solution is given in terms of the parameter t as

x = t

y = 1
3 t

z = 1
3t

w = t

Choose a value for t, say 3. This yields x = 3, y = 1, z = 1, and w = 3. It follows that the balanced reaction

is given by

3KOH +H3PO4→ K3PO4 +3H2O

Note that this results in the same number of atoms of each element on both sides. ♠

Exercises

Exercise 1.9.1 Balance the following chemical reactions.

(a) KNO3 +H2CO3→ K2CO3 +HNO3

(b) AgI +Na2S→ Ag2S+NaI

(c) Ba3N2 +H2O→ Ba(OH)2 +NH3

(d) CaCl2+Na3PO4→Ca3(PO4)2 +NaCl

1.10 Application: Dimensionless variables

This section shows how solving systems of equations can be used to determine appropriate dimensionless

variables. It is only an introduction to this topic and considers a specific example of a simple airplane

wing shown below. We assume for simplicity that it is a flat plane at an angle to the wind which is blowing

against it with speed V as shown.

A
Bθ

V
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The angle θ is called the angle of incidence, B is the span of the wing and A is called the chord.

Denote by l the lift. Then this should depend on various quantities like θ ,V ,B,A and so forth. Here is a

table which indicates various quantities on which it is reasonable to expect l to depend.

Variable Symbol Units

chord A m

span B m

angle incidence θ m0 kg0 s0

speed of wind V ms−1

speed of sound V0 ms−1

density of air ρ kgm−3

viscosity µ kgs−1 m−1

lift l kgs−2 m

Here m denotes meters, s refers to seconds and kg refers to kilograms. All of these are likely familiar

except for µ , which we will discuss in further detail now.

Viscosity is a measure of how much internal friction is experienced when the fluid moves. It is roughly

a measure of how “sticky" the fluid is. Consider a piece of area parallel to the direction of motion of the

fluid. To say that the viscosity is large is to say that the tangential force applied to this area must be large

in order to achieve a given change in speed of the fluid in a direction normal to the tangential force. Thus

µ(area)(velocity gradient) = tangential force

Hence

(units of µ)m2
( m

sm

)
= kgs−2 m

Thus the units of µ are

kgs−1 m−1

as claimed above.

Returning to our original discussion, you may think that we would want

l = f (A,B,θ ,V ,V0,ρ , µ)

This is very cumbersome because it depends on seven variables. Also, it is likely that without much care,

a change in the units such as going from meters to centimeters would result in an incorrect value for l.

The way to get around this problem is to look for l as a function of dimensionless variables multiplied by

something which has units of force. It is helpful because first of all, you will likely have fewer independent

variables and secondly, you could expect the formula to hold independent of the way of specifying length,

mass and so forth. One looks for

l = f (g1, . . . ,gk)ρV 2AB

where the units of ρV 2AB are
kg

m3

(m

s

)2
m2 =

kg×m

s2

which are the units of force. Each of these gi is of the form

Ax1Bx2θ x3V x4V
x5
0 ρx6 µx7 (1.16)
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and each gi is independent of the dimensions. That is, this expression must not depend on meters, kilo-

grams, seconds, etc. Thus, placing in the units for each of these quantities, one needs

mx1 mx2(mx4 s−x4)(mx5 s−x5)(kgm−3)x6(kgs−1 m−1)x7 = m0 kg0 s0

Notice that there are no units of θ because it is just the radian measure of an angle. Hence its dimensions

consist of length divided by length, thus it is dimensionless. Then this leads to the following equations for

the xi.
m : x1 + x2 + x4 + x5−3x6− x7 = 0

s : −x4− x5− x7 = 0

kg : x6 + x7 = 0

The augmented matrix for this system is



1 1 0 1 1 −3 −1 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 1 0




The reduced echelon form is given by



1 1 0 0 0 0 1 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 1 0




and so the solutions are of the form

x1 = −x2− x7

x3 = x3

x4 = −x5− x7

x6 = −x7

Thus, in terms of vectors, the solution is



x1

x2

x3

x4

x5

x6

x7




=




−x2− x7

x2

x3

−x5− x7

x5

−x7

x7




Thus the free variables are x2,x3,x5,x7. By assigning values to these, we can obtain dimensionless vari-

ables by placing the values obtained for the xi in the formula (1.16). For example, let x2 = 1 and all the

rest of the free variables are 0. This yields

x1 =−1,x2 = 1,x3 = 0,x4 = 0,x5 = 0,x6 = 0,x7 = 0

The dimensionless variable is then A−1B1. This is the ratio between the span and the chord. It is called

the aspect ratio, denoted as AR. Next let x3 = 1 and all others equal zero. This gives for a dimensionless

quantity the angle θ . Next let x5 = 1 and all others equal zero. This gives

x1 = 0,x2 = 0,x3 = 0,x4 =−1,x5 = 1,x6 = 0,x7 = 0
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Then the dimensionless variable is V−1V 1
0 . However, it is written as V/V0. This is called the Mach number

M . Finally, let x7 = 1 and all the other free variables equal 0. Then

x1 =−1,x2 = 0,x3 = 0,x4 =−1,x5 = 0,x6 =−1,x7 = 1

then the dimensionless variable which results from this is A−1V−1ρ−1µ . It is customary to write it as

Re = (AVρ)/µ . This one is called the Reynold’s number. It is the one which involves viscosity. Thus we

would look for

l = f (Re,AR,θ ,M )kg×m/s2

This is quite interesting because it is easy to vary Re by simply adjusting the velocity or A but it is hard to

vary things like µ or ρ . Note that all the quantities are easy to adjust. Now this could be used, along with

wind tunnel experiments, to get a formula for the lift that would be reasonable. You could also consider

more variables and more complicated situations in the same way.

Exercises

Exercise 1.10.1 In this section, we observed that ρV 2AB has the units of force. Describe a systematic

way to obtain such combinations of the variables that will yield something that has the units of force.

1.11 Application: Resistor networks

The tools of linear algebra can be used to study the application of resistor networks. An example of an

electrical circuit is below.

+

−
18V

2Ω

4Ω

2Ω

	I1

The jagged lines ( ) denote resistors and the numbers next to them give their resistance in ohms,

written as Ω. The voltage source ( ) causes the current to flow in the direction from the longer of

the two lines toward the shorter3. Voltage is measured in volts, written as V. The current for a circuit is

labelled Ik, and is measured in amperes, written as A.

3By current, we always mean the conventional current, which flows from plus to minus. It is the opposite of the electron

flow, which goes from minus to plus.
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In the above figure, the current I1 has been labelled with an arrow in the counterclockwise direction.

This is an entirely arbitrary decision and we could have chosen to label the current in the counterclockwise

direction. With our choice of direction here, we define a positive current to flow in the counterclockwise

direction and a negative current to flow in the clockwise direction.

The goal of this section is to use the values of resistors and voltage sources in a circuit to determine

the current. An essential theorem for this application is Kirchhoff’s law.

Theorem 1.60: Kirchhoff’s law

The sum of the resistance (R) times the amperes (I) in the counterclockwise direction around a loop

equals the sum of the voltage sources (V ) in the same direction around the loop.

Kirchhoff’s law allows us to set up a system of linear equations and solve for any unknown variables.

When setting up this system, it is important to trace the circuit in the counterclockwise direction. If a

resistor or voltage source is crossed against this direction, the related term must be given a negative sign.

We will explore this in the next example where we determine the value of the current in the initial

diagram.

Example 1.61: Solving for current

Applying Kirchhoff’s Law to the diagram below, determine the value for I1.

+

−
18V

2Ω

4Ω

2Ω

	I1

Solution. Begin in the bottom left corner, and trace the circuit in the counterclockwise direction. At the

first resistor, multiplying resistance and current gives 2I1. Continuing in this way through all three resistors

gives 2I1 +4I1 +2I1. This must equal the voltage source in the same direction. Notice that the direction

of the voltage source matches the counterclockwise direction specified, so the voltage is positive.

Therefore the equation and solution are given by

2I1 +4I1 +2I1 = 18,

8I1 = 18,

I1 =
9

4
A.

Since the answer is positive, this confirms that the current flows counterclockwise. ♠
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Example 1.62: Solving for current

Applying Kirchhoff’s Law to the diagram below, determine the value for I1.

4Ω

+−
27V

3Ω

1Ω

6Ω

	I1

Solution. Begin in the top left corner this time, and trace the circuit in the counterclockwise direction.

At the first resistor, multiplying resistance and current gives 4I1. Continuing in this way through the four

resistors gives 4I1 +6I1 +1I1 +3I1. This must equal the voltage source in the same direction. Notice that

the direction of the voltage source is opposite to the counterclockwise direction, so the voltage is negative.

Therefore the equation and solution are given by

4I1 +6I1 +1I1 +3I1 = −27,

14I1 = −27,

I1 = −27

14
A.

Since the answer is negative, this tells us that the current flows clockwise. ♠

A more complicated example follows. Two of the circuits below may be familiar; they were examined in

the examples above. However as they are now part of a larger system of circuits, the answers will differ.

Example 1.63: Unknown currents

The diagram below consists of four circuits. The current (Ik) in the four circuits is denoted by I1, I2,

I3, I4. Using Kirchhoff’s Law, write an equation for each circuit and solve for each current.

+

−
18V

2Ω

4Ω

2Ω +−
27V

3Ω

1Ω

6Ω

2Ω

3Ω

1Ω

5Ω

+

−23V

	I2 	I3

	I4	I1
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Solution. Starting with the top left circuit, multiply the resistance by the current and sum the resulting

products. Specifically, consider the resistor labelled 2Ω that is part of the circuits of I1 and I2. Notice that

current I2 runs through this in a positive (counterclockwise) direction, and I1 runs through in the opposite

(negative) direction. The product of resistance and current is then 2(I2− I1) = 2I2−2I1. Continue in this

way for each resistor, and set the sum of the products equal to the voltage source to write the equation:

2I2−2I1 +4I2−4I3 +2I2 = 18.

The above process is used on each of the other three circuits, and the resulting equations are:

Upper right circuit:

4I3−4I2 +6I3−6I4 + I3 +3I3 =−27.

Lower right circuit:

3I4 +2I4 +6I4−6I3 + I4− I1 = 0.

Lower left circuit:

5I1 + I1− I4 +2I1−2I2 =−23.

Notice that the voltage for the upper right and lower left circuits are negative due to the clockwise

direction they indicate. The resulting system has four equations in four variables. Simplifying and rear-

ranging with variables in order, we have:

−2I1 +8I2−4I3 = 18,

−4I2 +14I3−6I4 = −27,

−I1−6I3 +12I4 = 0,

8I1−2I2− I4 = −23.

The augmented matrix is 


−2 8 −4 0 18

0 −4 14 −6 −27

−1 0 −6 12 0

8 −2 0 −1 −23


 .

The solution to this system of equations is

I1 = −3A,

I2 =
1

4
A,

I3 = −5

2
A,

I4 = −3

2
A.

This tells us that currents I1, I3, and I4 travel clockwise while I2 travels counterclockwise. ♠

Exercises

Exercise 1.11.1 Consider the following diagram of four circuits.
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+

−
5V

2Ω

5Ω

3Ω +−
20V

1Ω

1Ω

6Ω

3Ω

2Ω

1Ω

4Ω

+

−10V

	I2 	I3

	I4	I1

The current in amperes in the four circuits is denoted by I1, I2, I3, and I4. It is understood that a positive

current means a current flowing in the counterclockwise direction. If Ik ends up being negative, then it just

means the current flows in the clockwise direction. In the above diagram, the top left circuit should give

the equation

2I2−2I1 +5I2−5I3 +3I2 = 5.

Write equations for each of the other three circuits and then give a solution to the resulting system of

equations.

Exercise 1.11.2 Find I1, I2, and I3, the counterclockwise currents in amperes in the three circuits of the

following diagram.

+

−
10V

2Ω

5Ω

3Ω +−
12V

7Ω

3Ω

1Ω

4Ω

4Ω

2Ω

	I1 	I2

	I3



2. Vectors in Rn

2.1 Points and vectors

Outcomes

A. Understand the geometric and algebraic meaning of points and vectors in Rn.

B. Find the position vector of a point in Rn.

C. Determine whether two vectors are equal.

In this section, we define points and vectors in n-dimensional space, and discuss some of their interpreta-

tions. We start with a brief review of Cartesian coordinate systems.

Points in n-dimensional space. You are probably already familiar with Cartesian coordinates, which let

you describe points in 2- or 3-dimensional space. Consider the familiar coordinate plane, with an x-axis

and a y-axis. Any point within this coordinate plane is identified by its x- and y-coordinates. For example,

the point P in the following diagram has x-coordinate 2 and y-coordinate 1. We write these coordinates

as an ordered pair P = (2,1). Here, “ordered” means that the x-coordinate comes first, and then the y-

coordinate, i.e., (1,2) is not the same point as (2,1). Coordinates can be positive, negative, or zero. The

special point with coordinates (0,0) is called the origin of the coordinate system, and also written as 0.

x

y

−3 2

1

4
Q = (−3,4)

P = (2,1)

The situation in 3 dimensions is analogous. Here, the coordinate system has three axes, and each point

is described by a triple of coordinates, which we can write as (x,y,z). We can extend these ideas beyond

n = 3. A coordinate system for n-dimensional space has n axes, which we may call x1, . . . ,xn (as there

are not enough letters in the alphabet to continue after z). A point of n-dimensional space is described by

an ordered n-tuple (x1, . . . ,xn) of coordinates. For example, P = (2,1,0,−1) is a point in 4-dimensional

space which has x1-coordinate 2, x2-coordinate 1, and so on. While most people cannot really picture

61
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space beyond 3 dimensions, it is easy to imagine tuples of n real numbers. Thus, although we may not be

able to “see” the points in higher dimensions, we can still talk about their coordinates.

Vectors in n-dimensional space. Unlike a point, which describes a location in a coordinate system, a

vector describes an offset or a distance and direction. We usually picture a vector as an arrow, starting at

one point (called the tail of the arrow) and ending at another point (called the tip of the arrow).

Two vectors are considered equal if they have the same direction and length. Thus, all four blue arrows

in the above image describe exactly the same vector. Mathematically, a vector in 2-dimensional space is

described as an offset in the x-direction and an offset in the y-direction. For example, a certain vector v

may be described by the instruction: “move 4 units in the direction parallel to the x-axis, and move 3 units

in the direction parallel to the y-axis”. This situation is pictured here:

v

4 units

3 units

The numbers 4 and 3 are also called the x-component and the y-component of the vector. Notice that

a point has “coordinates”, but a vector has “components”. We write the components of a vector as an

ordered column within square brackets: v=
[

4
3

]
. Note that components can also be negative; for example,

a negative x-component indicates to move left instead of right, and a negative y-component indicates to

move down instead of up. The vector with all components equal to 0 is called the zero vector, and is

written 0.

The situation in 3 dimensions is similar. Here, a vector is described by three components, namely, its

x-component, y-component, and z-component. The three components are written as
[

x
y
z

]
. The same idea

generalizes to n-dimensional vectors when n is greater than 3.

Definition 2.1: Column vectors and Rn

A n-dimensional column vector, often simply called a vector, is an ordered list of n real numbers,

written as a column within square brackets:




x1

x2
...

xn


 .

We write Rn for the set of all n-dimensional column vectors. It is also known as n-dimensional

Euclidean space.
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Vectors are usually denoted by boldface lower-case letters such as v, w, a, b. Some people write a small

arrow above the vector, but we do not do this here.

Points vs. vectors. What is the relationship between points and vectors? Algebraically, they seem to be

almost the same thing, because a point (x,y) and a vector
[

x
y

]
are both an ordered pair of real numbers,

written in a slightly different way. On the other hand, geometrically, a point is a location in space, and has

neither a length nor direction, whereas a vector has length and direction, but is not fixed at any particular

location. Indeed, to convince yourself that despite the similarity in their notation, points and vectors

are different kinds of objects, imagine that we moved the origin of the coordinate system to a different

location. Then the coordinates of all the points would change, whereas the components of all the vectors

would remain the same. To describe the components of a vector, we require axes and a scale, but no origin.

To describe the coordinates of a point, we require axes, a scale, and an origin.

Vectors from points. If Q and P are two points in n-dimensional space, we can define a vector from Q

to P. This vector is written
−→
QP, and is described by the arrow whose tail is at Q and whose tip is at P, as

in the following picture:

Q
P

−→
QP

If the point Q has coordinates (q1, . . . ,qn) and the point P has coordinates (p1, . . . , pn), then the components

of
−→
QP are

−→
QP =




p1−q1
...

pn−qn


 .

An important special case of this is the case when the point Q is the origin. The following definition is

concerned with that situation.

Definition 2.2: The position vector of a point

Let P be a point in n-dimensional space. The position vector of P is the vector p =
−→
0P whose tail

is at the origin and whose tip is at P.

0

Pp

If the point P has coordinates (p1, . . . , pn), then the components of the position vector are

p =




p1
...

pn


 .

Thus, the coordinates of a point are the same as the components of its position vector. For this

reason, the position vector is also sometimes called the coordinate vector of P.
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Points from vectors. Conversely, given any vector p, we may find a point P that has p as its position

vector. To do so geometrically, we first have the move the vector p around until its tail is at the origin. The

point P will then be located at its tip.

0

P

p

p
p

Algebraically, if the vector p has components

p =




p1
...

pn


 ,

then the point P will have coordinates (p1, . . . , pn). This is just the opposite process of Definition 2.2.

So although we went to some lengths to point out that vectors and points are different geometric

objects, as soon as an origin of a coordinate system has been fixed, we can always talk about a point by

talking about its coordinate vector. We will systematically do so, and eventually the distinction between a

point and its coordinate vector will become blurred, so that we will be able to talk about Rn as “a set of

points” or “a set of vectors” interchangeably.

Equality of vectors. Two vectors are equal precisely when all corresponding components are equal. In

symbols, if

u =




u1
...

un


 and v =




v1
...

vn


 ,

then u = v if and only if u1 = v1 and u2 = v2 and . . . and un = vn.

Notation. In the text, it is often awkward to write column vectors, because they take up so much space.

To save space, we sometimes use a superscript “T ” to denote a column vector. For example, we write[
1 2 3

]T
, or sometimes [1,2,3]T , to denote the vector




1

2

3


 .

The letter “T ” stands for “transpose”. To transpose a vector means to turn a row into a column or vice

versa.
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Exercises

Exercise 2.1.1 What is an element of R1?

Exercise 2.1.2 Given the points P = (2,0,−4) and Q = (5,−2,1), find
−→
PQ and

−→
QP.

Exercise 2.1.3 Find x and y so that u = [5x−3y,4]T and v = [2x−2y,2y]T are equal in R2.

2.2 Addition

Outcomes

A. Compute sums and differences of vectors algebraically and geometrically.

B. Use the laws of vector addition to prove equalities between vector expressions.

Addition of vectors in Rn is defined as follows.

Definition 2.3: Addition of vectors in Rn

For vectors u =




u1
...

un


 , v =




v1
...

vn


 ∈ Rn, the sum u+v ∈ Rn is defined by

u+v =




u1
...

un


+




v1
...

vn


=




u1 + v1
...

un + vn


 .

To add vectors, we simply add corresponding components. Therefore, in order to add vectors, they must

be the same size. For example, [1,2,3]T +[4,5,6]T = [1+4,2+5,3+6]T = [5,7,9]T .

The geometric significance of vector addition in Rn is given in the following proposition.
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Proposition 2.4: Geometry of vector addition

Let u and v be two vectors in Rn. Slide v so that the tail of v is on the tip of u. Then draw the arrow

which goes from the tail of u to the tip of v. This arrow represents the vector u+v.

u+v

u

v

Example 2.5: Commutative law

Let u and v be two vectors. Using the geometry of vector addition, explain why u+v = v+u.

Solution. In the following diagram, the vectors u and v form a parallelogram. Therefore, whether we line

up the tail of u with the tip of v or vice versa, we obtain the same vector, which is both u+v and v+u.

v+u

u+v

u

v

u

v

♠

Definition 2.6: Negative

The negative of a vector u =




u1
...

un


 ∈ Rn is defined by −u =



−u1

...

−un


.

Geometrically, the vector −u has the same magnitude as u, but the opposite direction.

u −u

To define the subtraction of two vectors, we simply regard u− v as an abbreviation for u+ (−v),
exactly as we do with real numbers. Algebraically, this just amounts to componentwise subtraction:




u1
...

un


−




v1
...

vn


=




u1− v1
...

un− vn


 .
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The following example illustrates how to subtract vectors geometrically.

Example 2.7: Graphing vector addition

Consider the following picture of vectors u and v.

u

v

Sketch a picture of u+v and u−v.

Solution. We will first sketch u+v. Begin by drawing u and then at the point of u, place the tail of v as

shown. Then u+v is the vector which results from drawing a vector from the tail of u to the tip of v.

u

v

u+v

Next consider u−v. This means u+(−v). From the above geometric description of vector addition,

−v is the vector which has the same length but which points in the opposite direction to v. Here is a picture

of −v

−v

The following picture fully represents u−v:

u

−v

u−v

Given any two vectors u and v one can create a parallelogram with sides these vectors and diagonals

u+v and v−u:

u

v

u−v u

v

u+v
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♠

Addition of vectors satisfies some important properties which are outlined in the following proposition.

Recall that 0 is the zero vector, the vector from Rn in which all components are equal to 0.

Proposition 2.8: Properties of vector addition

The following properties hold for vectors u,v,w ∈ Rn.

• The commutative law of addition

u+v = v+u.

• The associative law of addition

(u+v)+w = u+(v+w).

• The existence of an additive unit

u+0 = u.

• The existence of an additive inverse

u+(−u) = 0.

Exercises

Exercise 2.2.1 Find




1

2

3


+




1

5

1


+



−1

2

−4


.

Exercise 2.2.2 Use the properties of vector addition from Proposition 2.8 to show the following equalities.

Justify every step.

(a) (u+v)+w = (v+w)+u.

(b) (u+0)+(v+(−u)) = v.
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2.3 Scalar multiplication

Outcomes

A. Multiply a scalar by a vector algebraically and geometrically.

B. Use the laws of scalar multiplication to prove equalities between vector expressions.

Scalar multiplication of vectors in Rn is defined as follows.

Definition 2.9: Scalar multiplication of vectors in Rn

If k ∈ R is a scalar and u ∈ Rn is a vector, then their scalar multiplication ku ∈ Rn is defined by

ku = k




u1
...

un


=




ku1
...

kun


 .

For example 3 [1,2,3]T = [3,6,9]T and −2 [1,2,3]T = [−2,−4,−6]T .

Example 2.10: Geometric meaning of scalar multiplication

Let u = [2,1]T , and draw the following vectors to scale: 2u, u, 1
2u, 0u, −1

2u, −u, and−2u. What is

the geometric meaning of scalar multiplication?

Solution. Here is a picture of the seven vectors. We draw their tails in different places to make their

relationship easier to see.

2u u
1
2u 0u −1

2u −u −2u

We see that the vector ku has the same direction as u when k is positive, and the opposite direction when k

is negative. Further, the length of the vector is scaled by a factor of |k|. It increases if |k|> 1 and decreases

if |k| < 1. For example, the vector 2u is exactly twice as long as u. (It is because of this scaling property

that scalars are called scalars). ♠

Just as with addition, scalar multiplication of vectors satisfies several important properties. These are

outlined in the following proposition.
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Proposition 2.11: Properties of scalar multiplication

The following properties hold for vectors u,v ∈ Rn and k,ℓ scalars.

• The distributive law over vector addition

k(u+v) = ku+ kv.

• The distributive law over scalar addition

(k+ ℓ)u = ku+ ℓu.

• The associative law for scalar multiplication

k(ℓu) = (kℓ)u.

• The rule for multiplication by 1

1u = u.

Proof. We will show the proof of:

k(u+v) = ku+ kv.

Assume u = [u1, . . . ,un]
T and v = [v1, . . . ,vn]

T . We have:

k(u+v) = k [u1 + v1, . . . ,un + vn]
T

= [k(u1 + v1), . . . ,k(un + vn)]
T

= [ku1 + kv1, . . . ,kun + kvn]
T

= [ku1, . . . ,kun]
T +[kv1, . . . ,kvn]

T

= ku+ kv.

♠

Exercises

Exercise 2.3.1 Consider the vectors u and v drawn below.

u

v

Draw −u, 2v, and −1
2v.
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Exercise 2.3.2 Find−3




5

−1

2

−3


+5




−8

2

−3

6


.

Exercise 2.3.3 Use the properties of scalar multiplication from Proposition 2.11 and the properties of

vector addition from Proposition 2.8 to prove the following equalities. Justify every step.

(a) (k+ ℓ)(u+v) = ku+ kv+ ℓu+ ℓv.

(b) 0u = 0.

(c) (−1)u =−u.

(d) −(ku) = k(−u) = (−k)u.

2.4 Linear combinations

Outcomes

A. Compute linear combinations of vectors algebraically and geometrically.

B. Determine whether a vector is a linear combination of given vectors.

C. Find the coefficients of one vector as a linear combination of other vectors.

Now that we have studied both vector addition and scalar multiplication, we can combine the two opera-

tions. You may remember that when we talked about the solutions to homogeneous systems of equations

in Section 1.6, we briefly mentioned that the general solution of a homogeneous system is a linear combi-

nation of its basic solutions. We now return to the concept of a linear combination.

Definition 2.12: Linear combination

A vector v is said to be a linear combination of the vectors u1, . . . ,un if there exist scalars a1, . . . ,an

such that

v = a1u1 + . . .+anun.

The numbers a1, . . . ,an are called the coefficients of the linear combination.
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Example 2.13: Linear combination

We have

3



−4

1

0


+2



−3

0

1


=



−18

3

2


 .

Thus we can say that

v =



−18

3

2




is a linear combination of the vectors

u1 =



−4

1

0


 and u2 =



−3

0

1


 .

For the specific case of R3, there are three special vectors which we often use. They are given by

i =




1

0

0


 , j =




0

1

0


 , and k =




0

0

1


 .

We can write any vector u = [a1,a2,a3]
T as a linear combination of these vectors, namely

u = a1i+a2j+a3k.

We will use this notation from time to time.

Example 2.14: Determining if linear combination

Can v = [1,3,5]T be written as a linear combination of u1 = [2,2,6]T , u2 = [1,6,8]T , and u3 =
[3,8,18]T ? If yes, find the coefficients.

Solution. This question can be rephrased as: can we find scalars x,y,z such that

xu1 + yu2 + zu3 = v?

Multiplying out produces the system of linear equations

2x+ y+3z = 1

2x+6y+8z = 3

6x+8y+18z = 5.

Now we row reduce the corresponding augmented matrix to solve.




2 1 3 1

2 6 8 3

6 8 18 5




R1 ← R1−R2

R3 ← R3−3R1≃




0 −5 −5 −2

2 6 8 3

0 5 9 2


 R1 ← R1+R3≃




0 0 4 0

2 6 8 3

0 5 9 2


 R2 ↔ R1≃
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


2 6 8 3

0 0 4 0

0 5 9 2




1
2 R1

R2 ↔ R3≃




1 3 4 3
2

0 5 9 2

0 0 4 0




1
4 R3≃




1 3 4 3
2

0 5 9 2

0 0 1 0




R1 ← R1−4R3

R2 ← R2−9R3≃




1 3 0 3
2

0 5 0 2

0 0 1 0




1
5 R2≃




1 3 0 3
2

0 1 0 2
5

0 0 1 0


 R1 ← R1−3R2≃




1 0 0 3
10

0 1 0 2
5

0 0 1 0


 .

We are in the case where we have a unique solution:

x =
3

10

y =
2

5

z = 0.

This means that v is a linear combination of u1, u2, and u3:

v =
3

10
u1 +

2

5
u2 +0u3.

The coefficients are 3
10 , 2

5 , and 0. In fact, v is also a linear combination of just u1 and u2. ♠

In the following example, we examine the geometric meaning of linear combinations.

Example 2.15: Graphing a linear combination of vectors

Consider the following picture of the vectors u and v

u

v

Sketch a picture of u+2v and u− 1
2v.

Solution. Both vectors are shown below.

2v

−1
2v

u

u+2v

u− 1
2v

♠

Given any two non-parallel vectors u and v in R2, we can create a grid of their linear combinations. The

integer ones are pictured below. From this we can see that all vectors in R2 can be written as a linear

combination of u and v.
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u

v

−1u−1v

−1u+0v

−1u+1v

−1u+2v

−1u+3v

0u+3v

1u+3v

1u+3v
3u+3v

3u+2v

3u+1v

3u+0v

3u−1v

2u−1v

1u−1v

0u−1v

0

Exercises

Exercise 2.4.1 Find−7




6

0

4

−1


+6




−13

−1

1

6


.

Exercise 2.4.2 Decide whether

v =




4

4

−3




is a linear combination of the vectors

u1 =




3

1

−1


 and u2 =




2

−2

1


 .

If yes, find the coefficients.

Exercise 2.4.3 Decide whether

v =




4

4

4



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is a linear combination of the vectors

u1 =




3

1

−1


 , u2 =




8

0

−1


 and u3 =




2

−2

1


 .

If yes, find the coefficients.

2.5 Length of a vector

Outcomes

A. Compute the distance between points in n-dimensional space.

B. Compute the length of a vector algebraically and geometrically.

C. Find vectors that are a given distance from other vectors.

D. Use algebraic properties of the length operation to prove equalities.

E. Normalize a vector.

In this section, we explore what is meant by the length of a vector in Rn. We develop this concept by first

looking at the distance between two points in Rn. Consider two points P = (p1, p2) and Q = (q1,q2) in

the plane, as in the following picture.

Q = (q1,q2)

P = (p1, p2)

The distance between P and Q is shown in the picture as a solid line, which is the hypotenuse of a right

triangle. The lengths of the two other sides of this triangle are |p1−q1| and |p2−q2|. Therefore, the

Pythagorean Theorem implies the length of the hypotenuse (and thus the distance between P and Q)

equals

d(P,Q) =

√
|p1−q1|2 + |p2−q2|2 =

√
(p1−q1)2 +(p2−q2)2.

Now consider two points P = (p1, p2, p3) and Q = (q1,q2,q3) in 3-dimensional space.

Q = (q1,q2,q3)

P = (p1, p2, p3)

R = (p1, p2,q3)

S = (p1,q2,q3)
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We will use the Pythagorean Theorem twice to find the length of the solid line connecting P and Q. First,

by the Pythagorean Theorem applied to the right triangle QSR, the length of the line joining R and Q

equals

d(R,Q) =
√
(p1−q1)2 +(p2−q2)2.

Second, by the Pythagorean Theorem applied to the triangle QRP, the length of the line joining P and Q

equals

d(P,Q) =
√

d(R,Q)2+(p3−q3)2 =
√

(p1−q1)2 +(p2−q2)2 +(p3−q3)2

This discussion motivates the following definition for the distance between points in Rn.

Definition 2.16: Distance between points

Let P = (p1, . . . , pn) and Q = (q1, . . . ,qn) be two points in Rn. Then the distance between these

points is defined as

d(P,Q) =
√
(p1−q1)2 + . . .+(pn−qn)2.

This formula is also called the distance formula. We may also write |PQ| for the distance between

P and Q.

In the following example, we use Definition 2.16 to find the distance between two points in R4.

Example 2.17: Distance between points

Find the distance between the points P = (1,2,−4,6) and Q = (2,3,−1,0) in R4.

Solution. Using the distance formula, we have

d(P,Q) =
√

(1−2)2+(2−3)2 +(−4− (−1))2 +(6−0)2 =
√

12 +12 +32 +62 =
√

47.

♠

Example 2.18: The plane between two points

Describe the points in R3 that are equally distant from the two points Q = (1,2,3) and R = (0,1,2).

Solution. Let P = (p1, p2, p3) be such a point. Then P is the same distance from Q and R, thus d(P,Q) =
d(P,R). By the distance formula, we have

√
(p1−1)2 +(p2−2)2 +(p3−3)2 =

√
(p1−0)2 +(p2−1)2 +(p3−2)2.

Squaring both sides, we obtain

(p1−1)2 +(p2−2)2 +(p3−3)2 = p2
1 +(p2−1)2 +(p3−2)2,
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and so

(p2
1−2p1 +1)+(p2

2−4p2 +4)+(p2
3−6p3 +9) = p2

1 +(p2
2−2p2 +1)+(p2

3−4p3 +4).

Simplifying, this becomes

−2p1−4p2−6p3 +14 =−2p2−4p3 +5,

which can finally be written as

2p1 +2p2 +2p3 = 9. (2.1)

Therefore, the points P= (p1, p2, p3) that are the same distance from Q and R form a plane whose equation

is given by (2.1). ♠

We can now use our understanding of the distance between two points to define what is meant by the

length of a vector.

Definition 2.19: Length of a vector

Let

u =




u1
...

un




be a vector in Rn. Then the length of u, written ‖u‖, is given by

‖u‖=
√

u2
1 + . . .+u2

n.

The length of a vector is also sometimes called its magnitude or its norm.

This definition corresponds to Definition 2.16, if we consider the vector u to have its tail at the point

0 = (0, . . . ,0) and its tip at the point U = (u1, . . . ,un). Then the length of u is equal to the distance between

0 and U . In general,
∥∥∥−→PQ

∥∥∥= d(P,Q).

Reconsider Example 2.17. We could have also computed the distance between P and Q as the length

of the vector connecting them. This vector is
−→
PQ = [1,1,3,−6]T , and its length is

∥∥∥−→PQ

∥∥∥=
√

12 +12 +32 +62 =
√

47.

The following proposition states a few important properties of the length of vectors.

Proposition 2.20: Properties of length

The following hold for all vectors u,v and scalars k.

• ‖u‖ ≥ 0

• ‖u‖= 0 if and only if u = 0.

• ‖ku‖= |k| ‖u‖.
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We conclude this section by giving a special name to vectors of length 1.

Definition 2.21: Unit vector

A vector u ∈ Rn is called a unit vector if it has length 1, that is, if

‖u‖= 1.

Let v be a non-zero vector in Rn. Then there is a unit vector u that points in the same direction as v, but

has length 1. This vector is given by

u =
1

‖v‖v.

We often use the term normalize to refer to this process. When we normalize a vector, we find the

corresponding unit vector.

Example 2.22: Normalizing a vector

Consider the vector v = [1,−3,4]T . Find the unit vector u that has the same direction as v

Solution. We have ‖v‖=
√

12 +(−3)2 +42 =
√

26, and therefore

u =
1

‖v‖v =
1√
26

[1,−3,4]T =

[
1√
26

,− 3√
26

,
4√
26

]T

.

♠

Exercises

Exercise 2.5.1 Find the distance between the points P = (0,1,3) and Q = (2,−1,0) in R3.

Exercise 2.5.2 Find the distance between the points P = (1,3,−1,0) and Q = (2,2,3,3) in R4.

Exercise 2.5.3 Describe the points in R3 that are equally distant from the two points Q = (1,1,1) and

R = (−1,−1,−1).

Exercise 2.5.4 Describe the points in R3 that have distance 1 from the origin.

Exercise 2.5.5 Find the length of each of the following vectors.

u =

[
−3

2

]
, v =




1

−2

5


 , w =




1

4

−2

1


 .
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Exercise 2.5.6 Prove the properties of Proposition 2.20.

Exercise 2.5.7 Prove that for all vectors u ∈ Rn, we have ‖−u‖= ‖u‖.

Exercise 2.5.8 Which of the following are unit vectors?

u =
1

2




1

1

1


 , v =

1

3




1

1

1


 , w =

1

2




1

1

1

1


 .

Exercise 2.5.9 Normalize the following vectors.

u =

[
1

2

]
, v =



−2

3

2


 , w =




5

−3

1

−1


 .

2.6 The dot product

Outcomes

A. Compute the dot product of vectors geometrically and algebraically.

B. Use properties of the dot product, including the Cauchy-Schwarz inequality and the triangle

inequality, to prove further equalities and inequalities.

C. Determine whether two vectors are orthogonal.

D. Compute the scalar and vector projection of one vector onto another.

E. Decompose a vector into orthogonal components.

There are two ways of multiplying vectors that are useful in applications. The first of these is called the

dot product, and the second is called the cross product. We will consider the dot product here, and the

cross product in the next section.
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2.6.1. Definition and properties

When we take the dot product of two vectors, the result is a scalar. For this reason, the dot product is also

called the scalar product. Sometimes it is also called the inner product. The definition is as follows.

Definition 2.23: Dot product

Let u =




u1

u2
...

un


, v =




v1

v2
...

vn


 be two vectors in Rn. We define their dot product as

u·v = u1v1 +u2v2 + . . .+unvn.

Example 2.24: Compute a dot product

Find u·v for u = [1,2,0,−1]T and v = [0,1,2,3]T .

Solution. We have

u·v = (1)(0)+(2)(1)+(0)(2)+(−1)(3)

= 0+2+0+−3

= −1.

♠

The dot product satisfies a number of important properties.

Proposition 2.25: Properties of the dot product

The dot product satisfies the following properties, where u,v,w are vectors and k,ℓ are scalars.

• u·v = v·u.

• u·u≥ 0, and u·u = 0 if and only if u = 0.

• (ku+ ℓv)·w = k(u·w)+ ℓ(v·w).

• u·(kv+ ℓw) = k(u·v)+ ℓ(u·w).

• u·u = ‖u‖2.

The proof is left as an exercise. Note that, by the last part of the proposition, we can also use the dot

product to find the length of a vector.
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Example 2.26: Length of a vector

Use a dot product to find ‖u‖, where

u =




2

1

4

2


 .

Solution. By the last part of Proposition 2.25, we have ‖u‖=√u·u. We have u·u = 22 +12+42 +22 =
25, and therefore ‖u‖=√u·u =

√
25 = 5. ♠

2.6.2. The Cauchy-Schwarz and triangle inequalities

The Cauchy-Schwarz inequality is a fundamental inequality satisfied by the dot product. It is given in

the following proposition.

Proposition 2.27: Cauchy-Schwarz inequality

The dot product satisfies the inequality

|u·v| ≤ ‖u‖‖v‖ (2.2)

Furthermore equality is obtained if and only if one of u or v is a scalar multiple of the other.

Proof. First note that if u = 0, then both sides of (2.2) are equal to zero, and so the inequality holds in this

case. Therefore, we will assume in what follows that u 6= 0. Define a function of t ∈ R by

f (t) = (tu+v)·(tu+v).

Then by Proposition 2.25, f (t)≥ 0 for all t ∈ R. Also from Proposition 2.25, we have

f (t) = tu·(tu+v)+v·(tu+v)

= t2u·u+ t(u·v)+ tv·u+v·v
= t2‖u‖2 +2t(u·v)+‖v‖2 .

This means the graph of y = f (t) is a parabola which opens upwards and is never negative. It follows

that this function has at most one root. From the quadratic formula, we know that a quadratic function

at2+bt +c has one or zero roots if and only if b2−4ac≤ 0. Applying this reasoning to the function f (t),
we obtain

(2(u·v))2−4‖u‖2‖v‖2 ≤ 0,

which is equivalent to |u·v| ≤ ‖u‖‖v‖. ♠

An important consequence of the Cauchy-Schwarz inequality is the so-called triangle inequality, which

states that the length of one side of a triangle is less than or equal the sum of the lengths of the two other

sides.
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Proposition 2.28: Triangle inequality

For u,v ∈ Rn, we have

‖u+v‖ ≤ ‖u‖+‖v‖ . (2.3)

u+v

u

v

Proof. By properties of the dot product and the Cauchy-Schwarz inequality, we have

‖u+v‖2 = (u+v)·(u+v)

= (u·u)+(u·v)+(v·u)+(v·v)
= ‖u‖2 +2(u·v)+‖v‖2

≤ ‖u‖2 +2 |u·v|+‖v‖2

≤ ‖u‖2 +2‖u‖‖v‖+‖v‖2

= (‖u‖+‖v‖)2.

Therefore,

‖u+v‖2 ≤ (‖u‖+‖v‖)2.

Taking square roots of both sides, we obtain (2.3). ♠

Example 2.29: Triangle inequality

Use the triangle inequality to show

‖u‖−‖v‖ ≤ ‖u−v‖

holds for all vectors u,v ∈ Rn.

Solution. We have

‖u‖= ‖(u−v)+v‖ ≤ ‖u−v‖+‖v‖ ,

where we have used the triangle inequality in the last step. Note that this is an inequality between real

numbers. Bringing ‖v‖ to the other side of the equation, we have

‖u‖−‖v‖ ≤ ‖u−v‖ .

♠

2.6.3. The geometric significance of the dot product

The included angle of two vectors u and v is the angle θ between the vectors such that 0≤ θ ≤ π .
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u

v

θ

The dot product can be used to determine the included angle between two vectors.

Proposition 2.30: The dot product and the included angle

Let u and v be two vectors in Rn, and let θ be the included angle. Then the following equation

holds.

u·v = ‖u‖‖v‖cosθ .

In words, the dot product of two vectors equals the product of the magnitude (or length) of the two vectors

multiplied by the cosine of the included angle. Note that this gives a geometric description of the dot

product that does not depend explicitly on the coordinates of the vectors.

Example 2.31: Find the angle between two vectors

Find the angle between the vectors

u =

[
2

2

]
and v =

[
0

3

]
.

Solution. By Proposition 2.30,

u·v = ‖u‖‖v‖cosθ .

Hence,

cosθ =
u·v
‖u‖‖v‖ .

First, we compute u·v = (2)(0)+(2)(3) = 6. Then,

‖u‖=
√

22 +22 =
√

8,

‖v‖=
√

02 +32 = 3.

Therefore, we have

cosθ =
6

3
√

8
=

1√
2

.

Taking the inverse cosine of both sides of the equation, we find that θ = π
4 radians, or 45 degrees. ♠

Example 2.32: Computing a dot product from an angle

Let u,v be vectors with ‖u‖= 3 and ‖v‖= 4. Suppose the angle between u and v is π/3. Find u·v.
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Solution. From Proposition 2.30, we have

u·v = ‖u‖‖v‖cosθ = 3 ·4 · cos
(π

3

)
= 3 ·4 · 1

2
= 6.

♠

2.6.4. Orthogonal vectors

Two non-zero vectors are said to be orthogonal, sometimes also called perpendicular, if the included

angle is π/2 radians (90◦). By convention, we also say that the zero vector is orthogonal to all vectors.

Proposition 2.33: Orthogonal vectors

Let u and v be vectors in Rn. Then u and v are orthogonal if and only if

u·v = 0.

We also write u⊥ v to indicate that u and v are orthogonal.

Proof. If u or v is zero, the vectors are orthogonal by definition, and the dot product is 0 in that case, so the

proposition holds. Now assume u and v are both non-zero. Then by Proposition 2.30, we have u·v = 0

if and only if ‖u‖‖v‖cosθ if and only if cosθ = 0. Recall that the included angle is between 0 and π .

Therefore, cosθ = 0 if and only if θ = π/2. ♠

Example 2.34: Determine whether two vectors are orthogonal

Determine whether the vectors

u =




2

1

−1


 and v =




1

3

5




are orthogonal.

Solution. In order to determine if these two vectors are orthogonal, we compute the dot product. We have

u·v = (2)(1)+(1)(3)+(−1)(5)= 0,

and therefore, by Proposition 2.33, the two vectors are orthogonal. ♠

2.6.5. Projections

It is sometimes important to find the component of a vector in a particular direction. Consider the following

picture:
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v

u

0

P

Q

Here, u is a non-zero vector specifying a direction, and v is any vector. We have given the label Q to

the tip of v. The point P lies at the place along u that is closest to Q, or equivalently, such that (0,P,Q)
forms a right triangle. The distance from 0 to P (measured positively in the direction of u) is called the

component of v in the direction of u, and is denoted compu(v). The vector
−→
0P is called the projection of

v onto u, and is denoted proju(v). We wish to find formulas for these quantities.

Let θ be the included angle between v and u. From trigonometry, considering the right triangle

(0,P,Q), we know that

cosθ =
|0P|
|0Q| =

|0P|
‖v‖ ,

and therefore

|0P|= ‖v‖cosθ . (2.4)

On the other hand, from Proposition 2.30, we have

u·v = ‖u‖‖v‖cosθ ,

and therefore

‖v‖cosθ =
u·v
‖u‖ . (2.5)

Putting equations (2.4) and (2.5) together, we obtain the desired formula for the component of v in the

direction of u:

compu(v) = |0P|= u·v
‖u‖ . (2.6)

Note that it is possible for this quantity to be negative; this happens when the angle between v and u is

obtuse. In this case, v will have a negative component along u.

The vector proju(v) =
−→
0P can now be computed by re-scaling u to the correct length. Specifically, we

first normalize u by dividing it by its own length, and then multiply by |0P|. In formulas:

proju(v) =
−→
0P =

|0P|
‖u‖u =

u·v
‖u‖2

u =
u·v
u·u u. (2.7)

The following definition summarizes what we have just found.
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Definition 2.35: Vector projection

Let u be a non-zero vector and v any vector. Then the component of v in the direction of u is

defined to be the scalar

compu(v) =
u·v
‖u‖ .

The projection of v onto u is defined to be the vector

proju(v) =
u·v
u·u u =

u·v
‖u‖2

u.

These two operations are also called the scalar projection and vector projection, respectively.

Example 2.36: Find the projection of one vector onto another

Find proju(v) if

u =




2

3

−4


 and v =




1

−2

1


 .

Solution. We can use the formula provided in Definition 2.35 to find proju(v). First, compute u·v. This

is given by 


2

3

−4


·



1

−2

1


= (2)(1)+(3)(−2)+(−4)(1)=−8.

Similarly, u·u is given by




2

3

−4


·



2

3

−4


= 22 +32 +(−4)2 = 29.

Therefore, the projection is equal to

proju(v) =−
8

29




2

3

−4


=



−16/29

−24/29

32/29


 .

♠

An important application of projections is that every vector v can be uniquely written as a sum of two

orthogonal vectors, one of which is a scalar multiple of some given non-zero vector u, and the other of

which is orthogonal to u.
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Theorem 2.37: Decomposition into components

Let u be a non-zero vector, and let v be any vector. Then there exist unique vectors v‖ and v⊥ such

that

v = v‖+v⊥ (2.8)

where v‖ is a scalar multiple of u, and v⊥ is orthogonal to u.

Proof.

v

u
v‖

v⊥

To show that such a decomposition exists, let

v‖ = proju(v) =
u·v
u·u u,

and define v⊥ = v− v‖. By definition, (2.8) is satisfied, and v‖ is a scalar multiple of u. We must show

that v⊥ is orthogonal to u. For this, we verify that their dot product equals zero:

u·v⊥ = u·(v−v‖)

= u·v−u·v‖
= u·v− u·v

u·u u·u
= u·v−u·v
= 0.

To show uniqueness, suppose that (2.8) holds and v‖ = ku. Taking the dot product of both sides of (2.8)

with u and using u·v⊥ = 0, this yields

u·v = u·(v‖+v⊥)
= u·ku+u·v⊥
= k‖u‖2 ,

which implies k = u·v/‖u‖2. Thus there can be no more than one such vector v‖. Since v⊥ must equal

v−v‖, it follows that there can be no more than one choice for both v‖ and v⊥, proving their uniqueness.

♠

Example 2.38: Decomposition into components

Decompose the vector v into v = a+b where a is parallel to u and b is orthogonal to u.

v =



−5

3

−5


 , u =




1

2

−2


 .
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Solution. We can let a = v‖ and b = v⊥ as in the proof of Theorem 2.37. Then

a = v‖ = proju(v) =
u·v
u·u u =

11

9




1

2

−2


 =




11/9

22/9

−22/9




and

b = v⊥ = v−v‖ =



−5

3

−5


−




11/9

22/9

−22/9


 =



−56/9

5/9

−23/9


 .

♠

Exercises

Exercise 2.6.1 Find




1

2

3

4


·



2

0

1

3


.

Exercise 2.6.2 Let a,b be vectors. Show that (a·b) = 1
4(‖a+b‖2−‖a−b‖2).

Exercise 2.6.3 Using the properties of the dot product, prove the parallelogram identity:

‖a+b‖2 +‖a−b‖2 = 2‖a‖2 +2‖b‖2

Exercise 2.6.4 Find cosθ where θ is the angle between the vectors

u =




3

−1

−1


 ,v =




1

4

2




Exercise 2.6.5 Find cosθ where θ is the angle between the vectors

u =




1

−2

1


 ,v =




1

2

−7




Exercise 2.6.6 Use the formula given in Proposition 2.30 to verify the Cauchy Schwarz inequality and to

show that equality occurs if and only if one of the vectors is a scalar multiple of the other.

Exercise 2.6.7 Show that the triangle with vertices A = (2,0,−3), B = (5,−2,1) and C = (7,5,3) is a

right triangle.
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Exercise 2.6.8 Find projv(w) where w =




1

0

−2


 and v =




1

2

3


.

Exercise 2.6.9 Find projv(w) where w =




1

2

−2


 and v =




1

0

3


.

Exercise 2.6.10 Find projv(w) where w =




1

2

−2

1


 and v =




1

2

3

0


.

Exercise 2.6.11 Find compv(w) where w =




1

1

2


 and v =




0

3

3


.

Exercise 2.6.12 Find compv(w) where w =




1

−1

0


 and v =




1

1

2


.

Exercise 2.6.13 Does it make sense to speak of proj0(w)?

Exercise 2.6.14 Decompose the vector v into v = a+b where a is parallel to u and b is orthogonal to u.

v =




3

2

−5


 , u =




1

−1

2


 .

Exercise 2.6.15 Prove the Cauchy Schwarz inequality in Rn as follows. For u,v vectors, consider

(u−projv(u))·(u−projv(u))≥ 0

Simplify using the axioms of the dot product and then put in the formula for the projection. Notice that

this expression equals 0 and you get equality in the Cauchy Schwarz inequality if and only if u = projv(u).
What is the geometric meaning of u = projv(u)?

Exercise 2.6.16 Let v,w u be vectors. Show that (w+u)⊥ = w⊥+u⊥, where w⊥ = w−projv(w).

Exercise 2.6.17 Show that

u·(v−proju(v)) = 0

and conclude every vector in Rn can be written as the sum of two vectors, one which is orthogonal and

one which is parallel to the given vector.
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2.7 The cross product

Outcomes

A. Compute the cross product of vectors algebraically and geometrically.

B. Compute the box product of three vectors in R3.

C. Determine whether a system of three vectors in R3 is right-handed, algebraically and geomet-

rically.

D. Find the areas of parallelograms and triangles in R3.

E. Find the volume of a parallelepiped determined by three vectors in R3.

F. Use properties of the cross product and the dot product to prove algebraic equalities.

Unlike the dot product, the cross product is only defined in R3, i.e., only in 3-dimensional space. The

cross product of two vectors is a vector.

We will first discuss the geometric meaning of the cross product, and then give an algebraic description.

Both descriptions are equally important: the geometric description is essential for applications in physics

and geometry, whereas the algebraic description is necessary for computing.

2.7.1. Right-handed systems of vectors

We begin with a discussion of right-handed systems of vectors in 3-dimensional space.

Definition 2.39: Right-handed system of vectors

Three vectors, u,v,w form a right-handed system if when you extend the thumb of your right hand

in the direction of u and your index finger in the direction of v, your relaxed middle finger points

roughly in the direction of w.

u

v

w

u

v

w
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You should consider how a right-handed system would differ from a left-handed system. Try using your

left hand and you will see that the vector w would need to point in the opposite direction.

Recall the special vectors i = [1,0,0]T , j = [0,1,0]T , and k = [0,0,1]T we saw in Section 2.4. We

always assume that our coordinate system is drawn in such a way that the vectors i, j, k form a right-

handed system. Thus, if the thumb of your right hand points along the x-axis and your index finger points

along the y-axis, your middle finger should point along the z-axis.

j

i

k

When all three vectors lie in a plane, then we say that the vectors are coplanar. In this case, the system is

neither right-handed nor left-handed.

2.7.2. Geometric description of the cross product

The following is the geometric description of the cross product. Recall that the dot product of two vectors

results in a scalar. In contrast, the cross product results in a vector, as the cross product gives a direction

as well as a magnitude.

Definition 2.40: Geometric definition of cross product

Let u and v be two vectors in R3. Their cross product, written u×v, is the vector defined by the

following three rules.

1. Its length is ‖u×v‖= ‖u‖‖v‖sinθ , where θ is the included angle between u and v.

2. It is orthogonal to both u and v.

3. The vectors u, v, and u×v, in that order, form a right-handed system.

We note that the length of the cross product, ‖u×v‖, given by the formula ‖u‖‖v‖sinθ , is the area of the

parallelogram determined by u and v, as shown in the following picture.

v

u

θ

‖v‖sin(θ)
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2.7.3. Algebraic definition of the cross product

From its geometric description, we can prove that the cross product satisfies the following properties.

Proposition 2.41: Properties of the cross product

Let u,v,w be vectors in R3, and k a scalar. Then the following hold.

1. u×v =−(v×u).

2. u×u = 0.

3. (ku)×v = k(u×v) = u× (kv).

4. u× (v+w) = u×v+u×w.

5. (v+w)×u = v×u+w×u.

Proof. Formula 1. follows immediately from the definition. The vectors u× v and v×u have the same

magnitude, ‖u‖‖v‖sinθ , and an application of the right hand rule shows they have opposite direction.

Formula 2. is proven as follows. If k is a non-negative scalar, the direction of (ku)×v is the same as

the direction of u×v,k(u×v) and u×(kv). The magnitude is k times the magnitude of u×v which is the

same as the magnitude of k(u×v) and u× (kv). Using this yields equality in 2. In the case where k < 0,

everything works the same way except the vectors are all pointing in the opposite direction and you must

multiply by |k| when comparing their magnitudes.

The distributive laws, 3. and 4., are harder to establish. For now, we will content ourselves with

noticing that if we know that 3. is true, 4. follows. Namely, assuming 3., and using 1., we have

(v+w)×u =−u× (v+w)

=−(u×v+u×w)

= v×u+w×u.
♠

In turn, we can use the properties from Proposition 2.41 to get an algebraic description of the cross product.

We begin by determining the cross products of the special vectors i, j, and k. They are as follows:

i× j = k, j× i =−k, i× i = 0,

k× i = j, i×k =−j, j× j = 0,

j×k = i, k× j =−i, k×k = 0.

With this information and the laws of Proposition 2.41, we can compute the cross product of any two

vectors from their coordinates. Let

u =




u1

u2

u3


 and v =




v1

v2

v3


 .

Then we have:

u×v = (u1i+u2j+u3k)× (v1i+ v2j+ v3k)
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= u1v1(i× i) + u1v2(i× j) + u1v3(i×k)
+ u2v1(j× i) + u2v2(j× j) + u2v3(j×k)
+ u3v1(k× i) + u3v2(k× j) + u3v3(k×k)

= u1v10 + u1v2k − u1v3j

− u2v1k + u2v20 + u2v3i

+ u3v1j − u3v2i + u3v30

= (u2v3−u3v2)i+(u3v1−u1v3)j+(u1v2−u2v1)k.

The resulting formula for the cross product is summarized in the following Proposition.

Proposition 2.42: Coordinate description of cross product

The cross product can be computed as follows:




u1

u2

u3


×




v1

v2

v3


=




u2v3−u3v2

u3v1−u1v3

u1v2−u2v1


 .

We will now look at an example of how to compute a cross product.

Example 2.43: Find a cross product

Find u×v for the vectors

u =




1

−1

2


 and v =




3

−2

1


 .

Solution. Using Proposition 2.42, we compute



1

−1

2


×




3

−2

1


=




(−1)(1)− (2)(−2)
(2)(3)− (1)(1)

(1)(−2)− (−1)(3)


=




3

5

1


 .

♠

We use this concept in the following examples.

Example 2.44: Area of a parallelogram

Find the area of the parallelogram determined by the following vectors u and v:

u =




1

−1

2


 , v =




3

−2

1


 .

Solution. Notice that these vectors are the same as the ones given in Example 2.43. Recall from the

geometric description of the cross product that the area of the parallelogram is the magnitude of u× v.
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From Example 2.43, u×v = [3,5,1]T . Thus the area of the parallelogram is

‖u×v‖=
√

32 +52 +12 =
√

35.

♠

Example 2.45: Area of a parallelogram

Find the area of the parallelogram with vertices (1,0,1), (2,2,3), (−1,1,3), and (0,3,5).

Solution. Let P = (1,0,1), Q = (2,2,3), R = (−1,1,3), and S = (0,3,5).

P

Q

R

S

First, we check that this really is a parallelogram. We have to have
−→
PQ =

−→
RS. Indeed, this is the case,

as
−→
PQ = [2−1,2−0,3−1]T = [1,2,2]T and

−→
RS = [0− (−1),3−1,5−3]T = [1,2,2]T . We also compute−→

PR =
−→
QS = [−2,1,2]T . The area of the parallelogram is

∥∥∥−→PQ×−→PR

∥∥∥=

∥∥∥∥∥∥




1

2

2


×



−2

1

2



∥∥∥∥∥∥
=

∥∥∥∥∥∥




2

−6

5



∥∥∥∥∥∥
=
√

22 +(−6)2 +52 =
√

65.

♠

We can also use this concept to find the area of a triangle, as in the following example.

Example 2.46: Area of triangle

Find the area of the triangle determined by the points (1,2,3), (0,2,5), and (5,1,2).

Solution. Let P = (1,2,3), Q = (0,2,5), and R = (5,1,2). The area of the triangle is exactly half of the

area of the parallelogram determined by the vectors
−→
PQ and

−→
PR.

P

Q

R

We have
−→
PQ = [−1,0,2]T and

−→
PR = [4,−1,−1]T . The area of the parallelogram is the magnitude of the

cross product:

∥∥∥−→PQ×−→PR

∥∥∥=

∥∥∥∥∥∥



−1

0

2


×




4

−1

−1



∥∥∥∥∥∥
=

∥∥∥∥∥∥




2

7

1



∥∥∥∥∥∥
=
√

22 +72 +12 =
√

54.
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Hence the area of the triangle is 1
2

√
54 = 3

2

√
6. ♠

In general, the area of the triangle determined by three points P,Q,R in R3 is given by

1

2

∥∥∥−→PQ×−→PR

∥∥∥ .

2.7.4. The box product

In this section, we explore another application of the cross product. Recall that we can use the cross

product to find the the area of a parallelogram. As we will now show, we can also use the cross product

together with the dot product to find the volume of a parallelepiped. We begin with a definition.

Definition 2.47: Parallelepiped

The parallelepiped determined by three vectors u, v, and w consists of the set of points of the form

ru+ sv+ tw,

where r,s, t are real numbers between 0 and 1, inclusive. The parallelepiped is a 3-dimensional

body bounded by parallelograms as shown in this picture.

u

v

w

Notice that the base of the parallelepiped is the parallelogram determined by the vectors u and v. There-

fore, its area is equal to ‖u×v‖. The height of the parallelepiped is ‖w‖cosθ , where θ is the angle

between w and u×v, as shown in this picture.

u

v
wu×v

θ

The volume of this parallelepiped is the area of the base times the height which is just

‖u×v‖‖w‖cosθ = (u×v)·w.

This expression is known as the box product and is sometimes written as [u,v,w].

Consider what happens if you interchange v with w or u with w. Geometrically, we can see that this

merely introduces a minus sign. We find that the box product of three vectors equals the volume of the
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parallelepiped determined by the three vectors if the three vectors form a right-handed system, and the

negative of the volume if the vectors form a left-handed system. We summarize this in the following

proposition:

Proposition 2.48: The box product

Let u,v,w be three vectors in R3 that define a parallelepiped. The box product (u×v)·w is equal

to:

• The volume of the parallelepiped, if u,v,w form a right-handed system.

• The negative of the volume of the parallelepiped, if u,v,w form a left-handed system.

In any case, the volume of the parallelepiped can be computed as the absolute value of the box

product, given by |(u×v)·w|.

Example 2.49: Volume of a parallelepiped

Find the volume of the parallelepiped determined by the vectors

u =




1

2

−5


 , v =




1

3

−6


 , w =




3

2

3


 .

Solution. According to the above discussion, we can take the cross product of any two of these vectors,

and then the dot product with the third vector. The result will be either plus or minus the desired volume.

Therefore we can obtain the volume by taking the absolute value.

We first compute the cross product of u and v:

u×v =




1

2

−5


×




1

3

−6


 =




(2)(−6)− (−5)(3)
(−5)(1)− (1)(−6)
(1)(3)− (2)(1)


=




3

1

1




Then we take the dot product of this vector with w:

(u×v)·w =




3

1

1


·



3

2

3


 = 9+2+3 = 14.

Thus, the volume of the parallelepiped is 14 cubic units. ♠

The following is a consequence of Proposition 2.48:
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Corollary 2.50: Right- and left-handed systems of vectors

The box product (u×v)·w is:

• Positive, if u,v,w form a right-handed system.

• Negative, if u,v,w form a left-handed system.

• Zero, if u,v,w are coplanar.

Example 2.51: Right- and left-handed systems of vectors

Which of the following systems of vectors u,v,w is right-handed? Which one is left-handed? Which

one is coplanar?

(a) u = [1,2,0]T , v = [0,0,1]T , w = [1,−1,1]T .

(b) u = [1,1,1]T , v = [1,2,3]T , w = [0,1,1]T .

(c) u = [0,1,2]T , v = [1,2,2]T , w = [1,1,0]T .

Solution.

(a) We have [u,v,w] = (u×v)·w = [2,−1,0]T·[1,−1,1]T = 3, so the box product is positive and the

system of vectors u,v,w is right-handed.

(b) We have [u,v,w] = (u×v)·w = [1,−2,1]T·[0,1,1]T =−1, so the box product is negative and the

system is left-handed.

(c) We have [u,v,w] = (u× v)·w = [−2,2,−1]T ·[1,1,0]T = 0, so the box product is zero and the

vectors are coplanar.

♠

We finish this section with a law involving the dot product and the cross product. It represents a funda-

mental observation that comes directly from the geometric definition of the box product.

Proposition 2.52: Box product law

Let u, v, and w be vectors. Then (u×v)·w = u·(v×w).

Proof. This follows from observing that both (u×v)·w and u·(v×w) compute the same box product,

i.e., they either both give the volume of the parallelepiped or they both give the negative of the volume.

Alternatively, we can calculate each product explicitly:

(u×v)·w = u2v3w1−u3v2w1 +u3v1w2−u1v3w2 +u1v2w3−u2v1w3,

u·(v×w) = u2v3w1−u3v2w1 +u3v1w2−u1v3w2 +u1v2w3−u2v1w3.
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In Chapter 7, you will learn that these expressions are a special case of a determinant. ♠

Exercises

Exercise 2.7.1 Which of the following systems of vectors are right-handed? Which are left-handed?

(a) i,k, j, (b) j,k, i, (c) k, i, j, (d) k, j, i.

Exercise 2.7.2 Show that if a×u = 0 for every unit vector u, then a = 0.

Exercise 2.7.3 Find the area of the parallelogram determined by the vectors




1

2

3


,




3

−2

1


.

Exercise 2.7.4 Find the area of the parallelogram determined by the vectors




1

0

3


,




4

−2

1


.

Exercise 2.7.5 Find the area of the parallelogram with vertices (−2,3,1), (2,1,1), (1,2,−1), and (5,0,−1).

Exercise 2.7.6 Find the area of the triangle determined by the three points, (1,0,3),(4,1,0) and (−3,1,1).

Exercise 2.7.7 Find the area of the triangle determined by the three points, (1,2,3),(2,3,4) and (3,4,5).
Did something interesting happen here? What does it mean geometrically?

Exercise 2.7.8 Is u× (v×w) = (u× v)×w? What is the meaning of u× v×w? Explain. Hint: Try

(i× j)× j.

Exercise 2.7.9 Verify directly from the coordinate description of the cross product that u×v is orthogonal

to both u and v. Then show by direct computation that this coordinate description satisfies

‖u×v‖2 = ‖u‖2‖v‖2− (u·v)2

= ‖u‖2‖v‖2 (1− cos2(θ)),

where θ is the angle included between the two vectors. Explain why ‖u×v‖ has the correct magnitude.

Exercise 2.7.10 Prove the following formula by direct calculation: u× (v×w) = (u·w)v− (u·v)w.

Exercise 2.7.11 Use the formula from Exercise 2.7.10 to prove that the cross product satisfies the so-called

Jacobi identity:

u× (v×w)+v× (w×u)+w× (u×v) = 0.
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Exercise 2.7.12 Find the volume of the parallelepiped determined by the vectors




1

−7

−5


,




1

−2

−6


, and




3

2

3


.

Exercise 2.7.13 Which of the following systems of vectors u,v,w are right-handed? Which are left-

handed? Which are coplanar?

(a) u = [1,0,1]T , v = [1,2,0]T , w = [0,0,1]T .

(b) u = [0,1,1]T , v = [−1,2,0]T , w = [1,1,2]T .

(c) u = [1,−1,0]T , v = [1,0,1]T , w = [3,1,4]T .

(d) u = [1,0,0]T , v = [1,2,0]T , w = [2,0,−1]T .

Exercise 2.7.14 Suppose u,v, and w are three vectors whose components are all integers. Can you

conclude the volume of the parallelepiped determined from these three vectors will always be an integer?

Exercise 2.7.15 What does it mean geometrically if the box product of three vectors equals zero?

Exercise 2.7.16 Show that

(u×v)·w = (v×w)·u = (w×u)·v.

Exercise 2.7.17 Use the formula from Exercise 2.7.10 to show that

(u×v)·((v×w)× (w× z)) = ((v×w)·z)((u×v)·w).

Exercise 2.7.18 Simplify ‖u×v‖2 +(u·v)2−‖u‖2 ‖v‖2
.

Exercise 2.7.19 This problem uses calculus. For u,v,w functions of t, prove that the derivative satisfies

the following product rules:

(u×v)′ = u′×v+u×v′

(u·v)′ = u′·v+u·v′





3. Lines and planes in Rn

3.1 Lines

Outcomes

A. Find the vector, parametric, and symmetric equations of a line.

B. Determine whether a point is on a given line.

C. Determine whether two lines intersect.

D. Find the angle between two lines.

E. Find the projection of a point onto a line.

We can use the concept of vectors and points to find equations for lines in Rn. Consider a straight line L

that passes through a point P in the direction given by a non-zero vector d.

L

dP

Q

The line L is infinitely long in both directions, although the picture only shows a finite part of it. To find

an equation for this line, first suppose that Q is an arbitrary point on L. Then the vector
−→
PQ is parallel to

d. In other words, there exists some real number t such that

−→
PQ = t d.

If p is the position vector of P and q is the position vector of Q, we can write

−→
PQ = q−p.

Putting together the last two equations, we get q−p = t d, which we can write as

q = p+ t d.

This is called the vector equation of the line L. The vector d is called the direction vector, and t is called

a parameter. The parameter t can be any real number; each time we plug in a different number for t, we

get a different point Q on the line. The following picture shows the effect of the parameter:

101
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L

d

p

P

t =−1
t = 0

t = 1
t = 2

t = 3
t = 3

0

The following definition summarizes the above.

Definition 3.1: Vector equation of a line

Let p be a vector and d a non-zero vector. Then

q = p+ t d

is the vector equation of a straight line L. Specifically, as the parameter t ranges over the real

numbers, q ranges over the position vectors of all the points Q on the line L. The vector d is called

the direction vector of the line.

Example 3.2: A line from a point and a direction vector

Find a vector equation for the line which contains the point P = (2,0,3) and has direction vector

d = [1,2,1]T .

Solution. The position vector of the point P is p = [2,0,3]T . The equation of the line is q = p+ t d, which

we can write as 


x

y

z


=




2

0

3


+ t




1

2

1


 .

♠

Example 3.3: A line from two points

Find a vector equation for the line through the points P = (1,2,0,1) and R = (2,−4,6,3).

Solution. We can use P as the base point; its position vector is p = [1,2,0,1]T . We can use d =
−→
PR =

[1,−6,6,2] as the direction vector. Then a vector equation of the line is q = p+ t d, which we can also

write as 


x

y

z

w


=




1

2

0

1


+ t




1

−6

6

2


 .

♠
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When we write a vector equation in the form




x1

x2
...

xn


=




p1

p2
...

pn


+ t




d1

d2
...

dn


 ,

it is also called the component form of the vector equation.

Notice that the vector equation of a line is not unique. In fact, there are infinitely many vector equations

for the same line. For example, we can replace the parameter t with another parameter, say 3s or 1− r.

Example 3.4: Change of parameter

Consider the vector equation from Example 3.2,




x

y

z


=




2

0

3


+ t




1

2

1


 .

Find two other equations for the same line, by changing the parameter to 3s and to 1− r.

Solution. If we let t = 3s, we get




x

y

z


 =




2

0

3


+3s




1

2

1




=




2

0

3


+ s




3

6

3


 .

If we let t = 1− r, we get 


x

y

z


 =




2

0

3


+(1− r)




1

2

1




=




2

0

3


+




1

2

1


− r




1

2

1




=




3

2

4


+ r



−1

−2

−1


 .

♠
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Definition 3.5: Parametric equations of a line

A line with vector equation 


x1

x2
...

xn


=




p1

p2
...

pn


+ t




d1

d2
...

dn




can also be written as a set of n scalar equations:

x1 = p1 + t d1,

x2 = p2 + t d2,
...

xn = pn + t dn,

When written in this form, they are called the parametric equations of the line.

Example 3.6: Parametric equations

Find parametric equations for the line through the points P = (1,2,0,1) and R = (2,−4,6,3).

Solution. This is a same line as in Example 3.3. We can easily convert the vector equation



x

y

z

w


=




1

2

0

1


+ t




1

−6

6

2




to a set of parametric equations:
x = 1+ t,

y = 2−6t,

z = 6t,

w = 1+2t.

♠

Example 3.7: Determine whether a point is on a line

Determine whether the point P = (5,8,4) is on the line L given by the vector equation




x

y

z


=




1

2

1


+ t




2

3

1


 .

Solution. The point P is on the line L if and only if there exists some t ∈ R such that



1

2

1


+ t




2

3

1


=




5

8

4


 .
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Subtracting [1,2,1]T from both sides of the equation, this is equivalent to

t




2

3

1


=




4

6

3


 .

We can write this as a set of parametric equations:

2t = 4,

3t = 6,

t = 3.

This is a system of three linear equations in one variable, and we quickly see that it is inconsistent.

Therefore, the point P does not lie on the line L. ♠

Example 3.8: Determine whether two lines intersect

Determine whether the lines



x

y

z


=




3

1

0


+ t




2

0

1


 and




x

y

z


=




1

−1

5


+ s




2

1

−2




intersect. If yes, find the point of intersection.

Solution. The two lines intersect if and only if there exist t,s ∈ R such that




3

1

0


+ t




2

0

1


=




1

−1

5


+ s




2

1

−2


 .

Bringing s to the left-hand side, and subtracting [3,1,0]T from both sides of the equation, this is equivalent

to

t




2

0

1


− s




2

1

−2


=



−2

−2

5


 .

If we write this vector equation as a set of three parametric equations, it is a system of 3 linear equations

in 2 variables. The augmented matrix of the system is




2 −2 −2

0 −1 −2

1 2 5


 .

This system has reduced echelon form 


1 0 1

0 1 2

0 0 0


 ,
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and has the unique solution t = 1 and s = 2. Therefore, the lines intersect. (Other possible cases are: If

the system is inconsistent, the lines do not intersect. If the system has more than one solution, the lines

are identical). We find the point of intersection by plugging the parameter t = 1 into the equation of the

first line (or equivalently, but plugging s = 2 into the equation of the second line - doing it both ways is a

good way to double-check your answer). Therefore, the point of intersection is




3

1

0


+1




2

0

1


=




5

1

1


 .

♠

There is one other form for a line which is useful, which is the symmetric form. Consider the line given

by
x = 1+2t,

y = 1− t,

z = 3+2t.

We can solve each equation for t:

t = x−1
2 ,

t = y−1
−1 ,

t = z−3
2 .

Finally, we can eliminate t from the equations by setting all three equations equal to one another:

x−1

2
=

y−1

−1
=

z−3

2
.

The latter is really a system of 2 equations in 3 variables. This is the symmetric form of the equation of

the line. In the following example, we look at how to convert the equation of a line from symmetric form

to parametric form.

Example 3.9: Change symmetric form to parametric form

Consider the line whose equations are given in symmetric form as

x−2

3
=

y−1

2
=

z+3

1
.

Find parametric and vector equations for this line.

Solution. We set all three quantities equal to t:

t =
x−2

3
, t =

y−1

2
, t =

z+3

1
.

Solving these equations for x,y,z yields
x = 2+3t,

y = 1+2t,

z =−3+ t.
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These are the parametric equations for the line. The vector equation is




x

y

z


=




2

1

−3


+ t




3

2

1


 .

♠

We can use the dot product to find the angle between two intersecting lines. This is simply the smallest

angle between (any of) their direction vectors. The only subtlety here is that if u is a direction vector for a

line, then so is −u, and thus we will find pairs of complementary angles. We will take the smaller of the

two angles.

θ
π−θ

v

u

−u

Example 3.10: Find the angle between two lines

Find the angle between the two lines

L1 :




x

y

z


=




1

2

0


+ t



−1

1

2




and

L2 :




x

y

z


=




0

3

2


+ s




2

1

−1


 .

Solution. The direction vectors are

u =



−1

1

2


 and v =




2

1

−1


 .

The answer is given by

cosθ =
u·v
‖u‖‖v‖ =−

1

2
,

which gives θ = 2π
3 . Now the angles between any two direction vectors for these lines will either be 2π

3

or its complement φ = π − 2π
3 = π

3 . We choose the smaller angle, and therefore conclude that the angle

between the two lines is π
3 . ♠

Finally, we will show how to use projections to find the shortest distance from a point to a line.
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Example 3.11: Shortest distance from a point to a line

Let L be the line which goes through the point P = (0,4,−2) with direction vector d =

[
2
1
2

]
, and

let Q = (1,3,5). Find the shortest distance from Q to the line L, and find the point R on L that is

closest to Q.

L

d

P

Q

R

Solution. In order to determine the shortest distance from Q to L, we will first find the vector
−→
PQ and then

find the projection of this vector onto L. The vector
−→
PQ is given by

−→
PQ =




1

3

5


−




0

4

−2


=




1

−1

7


 .

Then, if R is the point on L closest to Q, it follows that

−→
PR = projd

−→
PQ =

d·−→PQ

‖d‖2
d =

15

9




2

1

2


 =

5

3




2

1

2


 .

Now, the distance from Q to L is given by
∥∥∥−→RQ

∥∥∥=
∥∥∥−→PQ−−→PR

∥∥∥=
√

26.

The point R is found by adding the vector
−→
PR to the position vector

−→
0P for P as follows




0

4

−2


+ 5

3




2

1

2


 =




10/3

17/3

4/3


 .

Therefore, R = (10
3 , 17

3 , 4
3). ♠

Exercises

Exercise 3.1.1 Find the vector equation for the line through (−7,6,0) and (−1,1,4). Then, find the

parametric equations for this line.

Exercise 3.1.2 Find parametric equations for the line through the point (7,7,1) with direction vector

d =

[
1
6
2

]
.
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Exercise 3.1.3 Parametric equations of the line are

x = t +2,

y = 6−3t,

z =−t−6.

Find a direction vector for the line and a point on the line.

Exercise 3.1.4 The equation of a line in two dimensions is written as y = x−5. Find a vector equation

for this line.

Exercise 3.1.5 Find parametric equations for the line through (6,5,−2,3) and (5,1,2,1).

Exercise 3.1.6 Consider the following vector equation for a line in R3:




x

y

z


=




1

2

0


+ t




1

0

1


 .

Find a new vector equation for the same line by doing the change of parameter t = 2− s.

Exercise 3.1.7 Consider the line given by the following parametric equations:

x = 2t +2,

y = 5−4t,

z =−t−3.

Find symmetric equations for the line.

Exercise 3.1.8 Find the point on the line segment from P = (−4,7,5) to Q = (2,−2,−3) which is 1
7 of the

way from P to Q.

Exercise 3.1.9 Suppose a triangle in Rn has vertices at P, Q, and R. Consider the lines which are drawn

from a vertex to the mid point of the opposite side. Show these three lines intersect in a point and find the

coordinates of this point.

Exercise 3.1.10 Determine whether the lines



x

y

z


=




1

1

2


+ t




1

2

2


 and




x

y

z


=




1

−1

−4


+ s




1

1

−1




intersect. If yes, find the point of intersection.

Exercise 3.1.11 Determine whether the lines



x

y

z


=




2

−1

0


+ t




1

3

2


 and




x

y

z


=




1

1

3


+ s




1

2

0



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intersect. If yes, find the point of intersection.

Exercise 3.1.12 Find the angle between the two lines




x

y

z


=




3

0

1


+ t




3

−3

0


 and




x

y

z


=




3

0

1


+ s



−1

2

2


 .

Exercise 3.1.13 Let P = (1,2,3) be a point in R3. Let L be the line through the point P0 = (1,4,5) with

direction vector d =

[
1
−1

1

]
. Find the shortest distance from P to L, and find the point Q on L that is

closest to P.

Exercise 3.1.14 Let P = (0,2,1) be a point in R3. Let L be the line through the points P0 = (1,1,1) and

P1 = (4,1,2). Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Exercise 3.1.15 When we computed the angle between two lines in Example 3.10, we calculated two

different angles and took the smaller of the two. Show that one can get the same answer by taking the

absolute value of the dot product, i.e., by solving

cosθ =
|u·v|
‖u‖‖v‖ .

3.2 Planes

Outcomes

A. Find the vector and parametric equations of a plane in Rn.

B. Find the normal and standard equations of a plane in R3.

C. Find the intersection of two planes, or of a line and a plane.

D. Find the angle between two planes, or between a line and a plane.

E. Find the shortest distance between a point and a plane.

Much like the above discussion with lines, vectors can be used to determine planes in Rn. Consider a point

P and two direction vectors d and e that are not parallel to each other. Then there is a unique plane passing

through P and containing d and e:
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d

e

P

The plane is infinite in each direction, although in the picture, we have only shown a small part of it. If p

is the position vector of P and q is the position vector of some other point in the plane, we have

q = p+ t d+ se

for some real numbers t and s. This is called the vector equation of the plane.

Definition 3.12: Vector equation of a plane

Let p be a vector and let d,e be non-zero, non-parallel vectors. Then

q = p+ t d+ se

is the vector equation of a plane.

The vector equation of a plane can also be written in component form



x1

x2
...

xn


=




p1

p2
...

pn


+ t




d1

d2
...

dn


 ,+s




e1

e2
...

en




and in parametric form

x1 = p1 + t d1 + se1,

x2 = p2 + t d2 + se2,
...

xn = pn + t dn + sen.

The latter set of equations are also called the parametric equations of the plane.

Example 3.13: Vector and parametric equations

Find vector and parametric equations for the plane through the points P= (1,2,0,0), Q= (2,2,0,1),
and R = (0,1,1,0).

Solution. We can use P as the base point and
−→
PQ and

−→
PR as the direction vectors. We have

−→
PQ =




2

2

0

1


−




1

2

0

0


=




1

0

0

1


 and

−→
PR =




0

1

1

0


−




1

2

0

0


=




−1

−1

1

0


 .
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Therefore the vector equation is




x

y

z

w


=




1

2

0

0


+ t




1

0

0

1


+ s




−1

−1

1

0


 .

We can also write this as a system of parametric equations:

x = 1+ t− s,

y = 2− s,

z = s,

w = t.

♠

Note that the vector and parametric equations of a plane are not unique. For example, in Example 3.13,

we could have equally used Q or R as the base point, and/or used
−→
QR as one of the direction vectors. In

each case we would have obtained a different equation for the same plane.

Example 3.14: Determine whether a point is on a plane

Determine whether the point S = (4,4,−2,1) lies on the plane through the points P = (1,2,0,0),
R = (2,2,0,1), and Q = (0,1,1,0).

Solution. We already found the parametric equations for this plane in Example 3.13. To determine whether

the point S = (4,4,−2,1) lies on this plane, we must substitute its coordinates into the parametric equa-

tions:
4 = 1+ t− s,

4 = 2− s,

−2 = s,

1 = t.

This is a system of linear equations. We solve it to find that it has the unique solution (t,s) = (1,−2).
Therefore, the point S lies on the given plane, and more specifically, it is the point that corresponds to the

parameters t = 1 and s =−2. ♠

In the special case of 3 dimensions, a plane can also be described by a point and a normal vector. A

normal vector of a plane is a vector that is perpendicular to the plane.

n

P
Q
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Given a non-zero vector n in R3 and a point P, there exists a unique plane that contains P and has n as a

normal vector. We wish to find an equation for this plane. If Q is an arbitrary point on the plane, then by

definition, the normal vector is orthogonal to the vector
−→
PQ. Writing this as a formula, we have n·−→PQ = 0.

If p and q are the position vectors of P and Q, respectively, we have
−→
PQ= q−p, and therefore the equation

of the plane can be written as

n·(q−p) = 0,

or equivalently,

n·q = n·p.

This is called the normal equation of the plane. Note that in this equation, n and p are given and fixed,

whereas q is a variable ranging over the position vectors of all points on the plane.

Definition 3.15: Normal equation of a plane in R3

Let n be a non-zero vector in R3, and let P be a point with position vector p. Then there is a unique

plane through P with normal vector n. It is described by the equation

n·q = n·p.

This equation is called the normal equation of the plane.

Example 3.16: Finding the normal equation of a plane

Find the normal equation of the plane through the point P = (1,3,0) and orthogonal to n= [2,1,1]T .

Solution. Let p = [1,3,0]T be the position vector of P, and let q = [x,y,z]T be the position vector of some

arbitrary point Q in the plane. The normal equation is n·q= n·p, which we can write in component form:




2

1

1


·



x

y

z


=




2

1

1


·



1

3

0


 .

We can pre-compute the dot product on the right-hand side: n·p = 1(2)+ 3(1) = 0(1) = 5. Therefore,

the normal equation can also be written as




2

1

1


·



x

y

z


= 5.

♠

Notice that the last equation in Example 3.16 can also be written in the form

2x+ y+ z = 5.

This last form is called the standard equation of the plane.
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Definition 3.17: Standard equation of a plane in R3

Let n = [a,b,c]T be the normal vector for a plane that contains the point P = (x0,y0,z0). The

standard equation of the plane is given by

ax+by+ cz = d,

where a,b,c,d ∈ R and d = ax0 +by0 + cz0.

Example 3.18: Normal and standard equations

Find normal and standard equations for the plane through the points P = (0,1,3), Q = (2,−1,0),
and R = (1,2,2).

Solution. We first need to find a normal vector for the plane. Since the normal vector must be perpendicular

to the plane, it must be orthogonal to both
−→
PQ and

−→
PR. We can therefore use the cross product to compute

a normal vector for the plane:

n =
−→
PQ×−→PR =




2

−2

−3


×




1

1

−1


 =




5

−1

4


 .

n

P

Q

R

Now we can easily obtain the normal equation from any point on the plane (say P) and the normal vector

we just calculated: 


5

−1

4


·



x

y

z


=




5

−1

4


·



0

1

3




We get the standard equation by computing the dot products on the left- and right-hand sides:

5x− y+4z = 11.

It is worthwhile to double-check the answer by substituting each of the three original points P, Q, and R

into this equation. For example, for Q = (2,−1,0), we obtain 5(2)− (−1)+ 4(0), which is indeed 11.

♠

Example 3.19: Find the normal vector of a plane

Find a normal vector for the plane 2x+3y− z = 7.
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Solution. The standard equation 2x+3y− z = 7 can be rewritten as a normal equation




2

3

−1


·



x

y

z


= 7.

Therefore,

n =




2

3

−1




is a normal vector for the plane. ♠

Example 3.20: Determine whether a point is on a plane

Let n = [1,2,3]T be the normal vector for a plane which contains the point P = (2,1,4). Determine

if the point Q = (5,4,1) is in this plane.

Solution. By Definition 3.15, Q is a point in the plane if and only if

n·q = n·p,

where p and q are the position vectors of P and Q, respectively. Given n, P, and Q as above, this equation

becomes 


1

2

3


·



5

4

1


 =




1

2

3


·



2

1

4


 .

Since both sides of the equation are equal to 16, the equation is true. So the point Q is indeed in the plane

determined by n and P. ♠

Example 3.21: Vector equation from normal equation

Find a vector equation for the plane x+3y−2z = 7.

Solution. This is the same thing as finding the general solution of a system of one linear equation in 3

variables. Since there is only a single equation x+3y−2z = 7, it is already in echelon form. The variables

y and z are free, so we set them equal to parameters: z = t and y = s. The variable x is a pivot variable, and

we get x = 7+2t−3s. So the general solution of the equation is




x

y

z


=




7

0

0


+ t




2

0

1


+ s



−3

1

0


 .

This is also a vector equation for the plane. ♠
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Example 3.22: Intersection of two planes

Find the intersection of the planes x−2y+ z = 0 and 2x−3y− z = 4.

Solution. Finding the intersection means finding all of the points (x,y,z) that are on both planes simulta-

neously. This is the same as solving the system of equations

x−2y+ z = 0,

2x−3y− z = 4.

We solve the system by Gauss-Jordan elimination:

[
1 −2 1 0

2 −3 −1 4

]
R2 ← R2−2R1≃

[
1 −2 1 0

0 1 −3 4

]
R1 ← R1+2R2≃

[
1 0 −5 8

0 1 −3 4

]
.

Therefore, the general solution is 


x

y

z


=




8

4

0


+ t




5

3

1


 ,

where t is a parameter. This is the parametric equation of a line. Therefore, the two planes intersect in a

line. Specifically, the intersection is the line through the point (8,4,0) with direction vector [5,3,1]T . ♠

Example 3.23: Intersection of a line and a plane

Find the intersection of the line



x

y

z


=




1

2

0


+ t



−1

1

2




and the plane 2x+2y− z = 2.

Solution. Let us write

p =




1

2

0


 , d =



−1

1

2


 , n =




2

2

−1


 , and q =




x

y

z


 .

Then the equation of the line is q = p+ t d and the equation of the plane is n·q = 2. Substituting the

first equation into the second one, we get n·(p+ t d) = 2. Using distributivity of the dot product, we can

write this last equation as n·p+ t(n·d) = 2. By computing the dot products n·p = 6 and n·d =−2, this

equation simplifies to 6− 2t = 2, or t = 2. Therefore, the line intersects the plane when t = 2, or at the

point 


x

y

z


=




1

2

0


+2



−1

1

2


=



−1

4

4


 .
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An alternative method is to directly substitute the parametric equation of the line, x = 1− t, y = 2+ t, and

z = 2t, into the equation of the plane, 2x+2y− z = 2. In this case, we get 2(1− t)+2(2+ t)− (2t)= 2,

which we can solve for t to obtain t = 2. ♠

The next few examples are concerned with calculating angles between planes, angles between lines and

planes, and finding the distance between points and planes.

Example 3.24: Find the angle between two planes

Find the angle between the planes 7x− y = 5 and 4x+3y+5z = 3.

Solution. The angle between two planes is the same thing as the angle between their normal vectors.

n1 n2

θ

θ

The normal vectors are n1 = [7,−1,0]T and n2 = [4,3,5]T . The angle between them is given by

cosθ =
n1·n2

‖n1‖‖n2‖
=

25

50
=

1

2
.

Therefore, the angle is arccos(1
2) = π/3, or 60 degrees. ♠

Example 3.25: Find the angle between a line and a plane

Find the angle between the line




x

y

z


=




1

2

0


+ t




2

−1

−2




and the plane 2x+2y− z = 2.

Solution. To get the angle θ between the plane and the line, we can compute the angle φ between the

direction vector of the line and the normal vector of the plane, and then take θ = π
2 −φ .
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n
d

θ
φ

The direction vector of the line is [2,−1,−2]T and the normal vector of the plane is [2,2,−1]. We have

cosφ =
n·d
‖n‖‖d‖ =

4

9
,

and therefore φ = arccos(4
9) ≈ 1.11 radians. We have θ = π

2 − φ ≈ 0.46 radians, or about 26.4 degrees.

♠

Example 3.26: Shortest distance from a point to a plane

Find the shortest distance from the point P = (3,2,3) to the plane given by 2x+y+2z = 2, and find

the point Q on the plane that is closest to P.

Solution. In this problem, we are going to use the projection of one vector onto another, which was

introduced in Section 2.6.5. Pick an arbitrary point R on the plane. Then, it follows that

−→
QP = projn

−→
RP

and
∥∥∥−→QP

∥∥∥ is the shortest distance from P to the plane. Further, the position vector of the point Q can be

computed as q = p−−→QP, where p is the position vector of P.

n

−→
RP

−→
QP

R

P

Q

From the above scalar equation, we have that n =

[
2
1
2

]
. Now, choose any point on the plane, for example,

R = (1,0,0) (notice that this satisfies 2x+ y+2z = 2). Then,

−→
RP =




3

2

3


−




1

0

0


=




2

2

3


 .
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Next, compute
−→
QP = projn

−→
RP.

−→
QP = projn

−→
RP =

(
n·−→RP

‖n‖2

)
n =

12

9




2

1

2


 =

4

3




2

1

2


 .

Then,
∥∥∥−→QP

∥∥∥ = 4 so the shortest distance from P to the plane is 4. To find the point Q on the plane that is

closest to P, we have

q = p−−→QP =




3

2

3


− 4

3




2

1

2


 =

1

3




1

2

1


 .

Therefore, Q = (1
3 , 2

3 , 1
3). ♠

Exercises

Exercise 3.2.1 Find vector and parametric equations for the plane through the points P = (0,1,1), Q =
(−1,2,1), and R = (1,1,2).

Exercise 3.2.2 Consider the following vector equation for a plane in R4:




x

y

z

w


=




1

2

0

0


+ t




1

0

0

1


+ s




−1

−1

1

0


 .

Find a new vector equation for the same plane by doing the change of parameters t = 1− r1, s = r1 + r2.

Exercise 3.2.3 Determine which of the following points lie on the plane through the points P = (2,6,1),
R = (1,4,1), and Q = (1,2,−1).

(a) S1 = (1,2,4).

(b) S2 = (1,5,2).

(c) S3 = (0,0,0).

Exercise 3.2.4 Use cross products to find the normal vector to the plane going through the points P =
(1,2,3), Q = (−2,1,8) and R = (2,2,2).

Exercise 3.2.5 Find normal and standard equations of the plane through the point P = (1,1,2) and

orthogonal to n = [1,0,−1]T .

Exercise 3.2.6 Find normal and standard equations for the plane through the points P = (2,1,0), Q =
(1,−1,0), and R = (1,1,−1).
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Exercise 3.2.7 Find a vector equation for the plane 2x+ y− z = 1.

Exercise 3.2.8 The chapter mentions that the normal equation and standard equation of a plane only

work in R3, and not in general Rn. Why does the equation ax+by+ cz+dw = e not describe a plane in

R4?

Exercise 3.2.9 Find the intersection between the planes x + 3y + 4z = 3 and 2x + 5y− z = 2. Is the

intersection a line, a plane, or empty?

Exercise 3.2.10 Find the intersection of the line




x

y

z


=




1

1

1


+ t




2

−1

2




and the plane x+3y+ z = 6. Is the intersection a point, a line, or empty?

Exercise 3.2.11 Find the angle between the planes x+ y = 5 and 2x+ y− z = 4.

Exercise 3.2.12 Find the angle between the line




x

y

z


=




0

3

7


+ t




1

1

4




and the plane 4x+7y+4z = 6.

Exercise 3.2.13 In Example 3.25, we calculated the angle θ between a line and a plane by calculating

the angle φ between the direction vector of the line and the normal vector of the plane according to the

formula

cosφ =
n·d
‖n‖‖d‖

and then taking θ = π
2 −φ .

(a) Explain what happens when the dot product is negative. How should we adjust the formula to ensure

that θ is always between 0 and π
2 ?

(b) Show that one can get the answer in a single step with the formula

sinθ =
|n·d|
‖n‖‖d‖ .

Exercise 3.2.14 Find the shortest distance from the point P= (1,1,−1) to the plane given by x+2y+2z=
6, and find the point Q on the plane that is closest to P.

Exercise 3.2.15 Use Exercise 2.7.15 to find an equation of a plane containing the two vectors p and q

and the point 0. Hint: If (x,y,z) is a point in this plane, the volume of the parallelepiped determined by

(x,y,z) and the vectors p, q equals 0.
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4.1 Definition and equality

Outcomes

A. Identify the dimension and entries of a matrix.

B. Check equality of matrices.

We have solved systems of equations by writing them in terms of an augmented matrix and then doing

row operations. It turns out that matrices are important not only for systems of equations but also for many

other purposes.

Definition 4.1: Matrix

A matrix is a rectangular array of numbers

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


 ,

where the ai j are scalars, called the entries or components of A. The size or dimension of a matrix

is defined as m×n, where m is the number of rows and n is the number of columns.

For example, here is a 3×4-matrix (pronounced “three-by-four matrix”):




1 2 3 4

5 2 8 7

6 −9 1 2


 .

This is a 3×4-matrix because there are three rows and four columns. When specifying the size of a matrix,

we always list the number of rows before the number of columns.

Entries of the matrix are identified according to their position. The (i, j)-entry of a matrix is the entry

in the i th row and j th column, and is often denoted ai j. For example, in the above matrix, the (2,3)-entry

is the entry in the second row and the third column, and is equal to 8. We sometimes use A =
[
ai j

]
as

121
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a short-hand notation for the entire m× n-matrix whose (i, j)-entry is equal to ai j for all i = 1, . . .m and

j = 1, . . . ,n.

There are various operations which are done on matrices of appropriate sizes. Matrices can be added

and subtracted, multiplied by a scalar, and multiplied by other matrices. We will never divide a matrix by

another matrix, but we will see later how matrix inverses play a similar role.

Definition 4.2: Equality of matrices

Two matrices are equal if they have the same size and the same corresponding entries. More

precisely, if A =
[
ai j

]
and B =

[
bi j

]
are two m×n-matrices, then A = B means that ai j = bi j for all

i = 1, . . .m and j = 1, . . . ,n.

For example, 


0 0

0 0

0 0


 6=

[
0 0

0 0

]

because they are different sizes. Also,

[
0 1

3 2

]
6=
[

1 0

2 3

]

because, although they are the same size, their corresponding entries are not identical.

There are special names for matrices of certain dimensions: some matrices are called square matrices,

columns vectors, or row vectors.

Definition 4.3: Square matrix

A matrix of size n×n is called a square matrix. In other words, A is a square matrix if it has the

same number of rows and columns.

Definition 4.4: Column vectors and row vectors

A matrix of size n× 1 is called a column vector. A matrix of size 1× n is called a row vector.

Here is an example of a column vector X and a row vector Y :

X =




x1
...

xn


 , Y =

[
y1 · · · yn

]
.

We have already encountered column vectors in Chapter 2. When we use the term vector without fur-

ther qualification, we always mean a column vector. Also recall from Definition 2.1 that the set of n-

dimensional column vectors is called Rn.
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Exercises

Exercise 4.1.1 Can a column vector ever be equal to a row vector?

Exercise 4.1.2 Find scalars x,y,z such that the following two matrices are equal.

[
x −1

2 4

]
and

[
2 y

z 4

]
.

Exercise 4.1.3 What are the dimensions of the following matrices?

A =

[
1 −2 0

4 3 2

]
, B =




3 4 1

1 3 1

6 2 2


 , C =




1 0

4 0

2 0

0 0


 .

Exercise 4.1.4 What is the (2,3)-entry of the matrix




1 2 1

−4 4 7

6 −5 3


?

4.2 Addition

Outcomes

A. Perform the operations of matrix addition and subtraction.

B. Identify when these operations are not defined.

C. Apply the algebraic properties of matrix addition to manipulate an algebraic expression in-

volving matrices.

To add two matrices, the matrices have to be of the same size. The addition works by simply adding

corresponding entries of the matrices.

Definition 4.5: Addition of matrices

Let A =
[
ai j

]
and B =

[
bi j

]
be two m×n-matrices. Then A+B = C where C is the m×n-matrix

C =
[
ci j

]
defined by

ci j = ai j +bi j
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Example 4.6: Addition of matrices

Add the following matrices.

A =

[
1 2 3

1 0 4

]
, B =

[
5 2 3

−6 2 1

]

Solution. Notice that both A and B are of size 2×3. Since A and B are of the same size, the addition is

possible. Using Definition 4.5, the addition is done as follows.

A+B =

[
1 2 3

1 0 4

]
+

[
5 2 3

−6 2 1

]
=

[
1+5 2+2 3+3

1+(−6) 0+2 4+1

]
=

[
6 4 6

−5 2 5

]
.

♠

On the other hand, the matrices



1 2

3 4

5 2


 and

[
−1 4 8

2 8 5

]

cannot be added, because one has size 3×2 while the other has size 2×3.

Definition 4.7: The zero matrix

The m×n zero matrix is the m×n-matrix in which all entries are equal to zero. It is denoted by 0.

Note there is a zero matrix for every size. For example, there is a 2×3 zero matrix, a 3×4 zero matrix,

and so on.

Example 4.8: The zero matrix

The 2×3 zero matrix is 0 =

[
0 0 0

0 0 0

]
.

Definition 4.9: Negative of a matrix and subtraction

The negative of a matrix A =
[
ai j

]
is defined to be −A = [−ai j]. In other words, it is obtained

by negating every entry of A. To subtract two matrices, we simply add the negative of the second

matrix to the first one, i.e., A−B = A+(−B). This is just the same as componentwise subtraction.

Example 4.10: Subtraction

Subtract the following matrices.

A =

[
1 2 3

1 0 4

]
, B =

[
5 2 3

−6 2 1

]
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Solution.

A−B =

[
1 2 3

1 0 4

]
−
[

5 2 3

−6 2 1

]
=

[
1−5 2−2 3−3

1− (−6) 0−2 4−1

]
=

[
−4 0 0

7 −2 3

]
.

♠

Addition of matrices obeys the same properties as addition of vectors.

Proposition 4.11: Properties of matrix addition

Let A,B and C be matrices of the same size. Then, the following properties hold.

• The commutative law of addition

A+B = B+A.

• The associative law of addition

(A+B)+C = A+(B+C).

• The existence of an additive unit

A+0 = A.

• The existence of an additive inverse

A+(−A) = 0.

Proof. To prove the commutative law of addition, let A and B be matrices of the same size. We want to

show that A+B = B+A. To do so, we use the definition of matrix addition given in Definition 4.5. We

have

A+B =
[
ai j +bi j

]
=
[
bi j +ai j

]
= B+A.

The proof of the other properties are similar, and are left as an exercise. ♠

Exercises

Exercise 4.2.1 For the following pairs of matrices, determine if the sum A+B and the difference A−B

are defined. If so, calculate them.

(a) A =

[
1 0

0 1

]
, B =

[
0 1

1 0

]
.

(b) A =

[
2 1 2

1 1 0

]
, B =

[
−1 0 3

0 1 4

]
.
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(c) A =




1 0

−2 3

4 2


, B =

[
2 7 −1

0 3 4

]
.

Exercise 4.2.2 For each matrix A, find the matrix −A.

(a) A =

[
1 2

2 1

]

(b) A =

[
−2 3

0 2

]

(c) A =




0 1 2

1 −1 3

4 2 0




Exercise 4.2.3 Let A =

[
1 2 −1

−1 4 0

]
and B =

[
0 3 0

1 −1 1

]
.

Find a matrix X such that (A+X)− (B+0) = B+A. Hint: first use the properties of matrix addition to

simplify the equation and solve for X.

Exercise 4.2.4 Using only the properties given in Proposition 4.11, show that if A+B = 0, then B =−A.

Exercise 4.2.5 Using only the properties given in Proposition 4.11, show A+B = A implies B = 0.

4.3 Scalar multiplication

Outcomes

A. Multiply a matrix by a scalar, and take linear combinations of matrices.

B. Identify when these operations are not defined.

C. Apply the algebraic properties of matrix addition and scalar multiplication to manipulate an

algebraic expression involving matrices.

The multiplication of a scalar by a matrix is called the scalar multiplication of matrices. The new matrix

is obtained by multiplying every entry of the original matrix by the given scalar, as in the following

example.

3




1 2 3 4

5 2 8 7

6 −9 1 2


=




3 6 9 12

15 6 24 21

18 −27 3 6


 .
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The formal definition of scalar multiplication is as follows.

Definition 4.12: Scalar multiplication of a matrix

If k is a scalar and A =
[
ai j

]
is a matrix, then kA =

[
kai j

]
.

Example 4.13: Linear combination of matrices

Find 2A−3B, where

A =

[
1 2 3

1 0 4

]
and B =

[
5 2 3

−6 2 1

]

Solution.

2A−3B = 2

[
1 2 3

1 0 4

]
−3

[
5 2 3

−6 2 1

]
=

[
2 4 6

2 0 8

]
−
[

15 6 9

−18 6 3

]
=

[
−13 −2 −3

20 −6 5

]
.

♠

Scalar multiplication of matrices obeys the same properties as scalar multiplication of vectors.

Proposition 4.14: Properties of scalar multiplication

Let A and B be matrices of the same size, and let k,ℓ be scalars. Then the following properties hold.

• The distributive law over matrix addition

k(A+B) = kA+ kB.

• The distributive law over scalar addition

(k+ ℓ)A = kA+ ℓA.

• The associative law for scalar multiplication

k(ℓA) = (kℓ)A.

• The rule for multiplication by 1

1A = A.

Exercises

Exercise 4.3.1 For each matrix A, find the products (−2)A, 0A, and 3A.



128 Matrices

(a) A =

[
1 2

2 1

]

(b) A =

[
−2 3

0 2

]

(c) A =




0 1 2

1 −1 3

4 2 0




Exercise 4.3.2 Find scalars x,y,z,w such that

x

[
1 2

3 5

]
+ y

[
0 1

1 1

]
+ z

[
0 2

−1 2

]
+ w

[
1 0

0 2

]
=

[
1 2

6 5

]
.

Exercise 4.3.3 Using only the properties given in Propositions 4.11 and 4.14, show that 0A = 0. Here the

0 on the left is the scalar 0 and the 0 on the right is the zero matrix of appropriate size.

4.4 Matrix multiplication

Outcomes

A. Use two different methods to multiply a matrix and a vector.

B. Multiply two matrices using the componentwise method, the column method, or the row

method.

C. Identify when these operations are not defined.

D. Write a system of linear equations in vector form and matrix form.

E. Demonstrate that matrix multiplication is not commutative.

F. Use algebraic properties of matrix multiplication to solve matrix equations.

4.4.1. Multiplying a matrix and a vector

One of the most important uses of a matrix is to multiply a matrix by a vector. In fact, this is one of the

reasons matrices were invented. Let us start by considering an alternative way of writing a system of linear

equations.
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Definition 4.15: The vector form of a system of linear equations

Suppose we have a system of equations given by

a11x1 + . . .+a1nxn = b1,

a21x1 + . . .+a2nxn = b2,
...

am1x1 + . . .+amnxn = bm.

We can express this system in vector form, which is as follows:

x1




a11

a21
...

am1


+ x2




a12

a22
...

am2


+ . . .+ xn




a1n

a2n
...

amn


 =




b1

b2
...

bm


 .

Notice that each vector used here is one column from the corresponding augmented matrix. There is

one vector for each variable in the system, along with the constant vector. The left-hand side is a linear

combination of column vectors. Linear combinations of column vectors are so important that we introduce

a special notation for them.

Definition 4.16: The product of a matrix and a vector, by columns

The product of an m× n-matrix A and an n-dimensional column vector x is an m-dimensional

column vector, defined as a linear combination of the columns of A as follows:

Ax =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







x1

x2
...

xn


 = x1




a11

a21
...

am1


+ x2




a12

a22
...

am2


+ . . .+ xn




a1n

a2n
...

amn


 .

In other words, we can think of the vector x as encoding instructions for how to take a linear combination

of the columns of A. The product Ax is computed by taking x1 times the first column of A, plus x2 times

the second column of A, and so on. For this to work, A must have the same number of columns as x has

components.

Example 4.17: Multiplying a matrix and a vector, by columns

Compute the product
[

1 2 3

4 5 6

]


7

8

9


 .
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Solution. We have

[
1 2 3

4 5 6

]


7

8

9


 = 7

[
1

4

]
+8

[
2

5

]
+9

[
3

6

]
=

[
50

122

]
.

♠

There is another way of looking at the product of a matrix and a vector. Instead of looking at the columns

of A, we can look at the rows.

Proposition 4.18: The product of a matrix and a vector, by rows

Let A be an m×n-matrix and let x be an n-dimensional column vector. The product Ax can also be

written like this:

Ax =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







x1

x2
...

xn


 =




a11x1 +a12x2 + . . .+a1nxn

a21x1 +a22x2 + . . .+a2nxn
...

am1x1 +am2x2 + . . .+amnxn


 .

Example 4.19: Multiplying a matrix and a vector, by rows

Compute the product
[

1 2 3

4 5 6

]


7

8

9




by rows.

Solution. We have

[
1 2 3

4 5 6

]


7

8

9


 =

[
1 ·7+2 ·8+3 ·9
4 ·7+5 ·8+6 ·9

]
=

[
50

122

]
.

Note that the is exactly the same answer as before. ♠

When we use Definition 4.16, we calculate the product by looking at one column of A at a time. When we

use Proposition 4.18, we calculate the product by looking at one row of A at a time. As the above examples

show, both methods give exactly the same answer. Please convince yourself that this is true in general.

This ability to switch back and forth between a column-based viewpoint and a row-based viewpoint is one

of the central tools of linear algebra.

Using the above operation, we can also write a system of linear equations in matrix form. In this

form, we express the system as a matrix multiplied by a vector.
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Definition 4.20: The matrix form of a system of linear equations

Suppose we have a system of equations given by

a11x1 + . . .+a1nxn = b1,

a21x1 + . . .+a2nxn = b2,
...

am1x1 + . . .+amnxn = bm.

Then we can express this system in matrix form, which is as follows:




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn







x1

x2
...

xn


=




b1

b2
...

bm


 .

The matrix form of a system of equations is therefore written as Ax = b, where A is the coefficient matrix

of the system, x is an n-dimensional column vector constructed from the variables of the system, and b is

an m-dimensional column vector constructed from the constant terms of the system. Any system of linear

equations can be written in this form.

4.4.2. Matrix multiplication

The multiplication of a matrix and a vector from the previous section is a special case of the operation of

multiplying two matrices, which we now define.

Definition 4.21: Matrix multiplication

Let A =
[
ai j

]
be an m×n-matrix, and let B =

[
b jk

]
be an n× p-matrix. Then their product is the

m× p-matrix AB = [cik] whose (i,k)-entry is defined by

cik = ai1b1k +ai2b2k + . . .+ainbnk.

For matrices A and B, in order to form the product AB, the number of columns of A must equal the number

of rows of B. Consider a product AB where A has dimensions m×n and B has dimensions n× p. Then the

dimensions of the product are given by

(

these must match!

m× n̂) (n× p) = m× p.

Note that the two outside numbers give the dimensions of the product. If the two middle numbers do not

match, we cannot multiply the matrices.



132 Matrices

To better visualize the rule of matrix multiplication, suppose

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


 and B =




b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp


 .

Then their product

AB =




c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
. . .

...

cm1 cm2 · · · cmp




is an m× p-matrix whose (i,k)-entry is defined by

cik = ai1b1k +ai2b2k + . . .+ainbnk.

Note that we can also write this as

cik =
[

ai1 ai2 · · · ain

]




b1k

b2k
...

bnk


 .

In other words, the (i,k)-entry of the matrix product AB is a kind of dot product of the i th row of A with

the k th column of B.

Example 4.22: Matrix multiplication

Find AB, where

A =

[
1 2 1

0 2 1

]
and B =




1 2 0

0 3 1

−2 1 1


 .

Solution. First, let us note that since A has size 2×3 and B has size 3×3, the product AB is well-defined

and has size 2×3. Let C = AB. We compute each of the six entries of C:

• The (1,1)-entry is the first row of A times the first column of B: c11 = 1 ·1+2 ·0+1 · (−2) =−1.

• The (1,2)-entry is the first row of A times the second column of B: c12 = 1 ·2+2 ·3+1 ·1 = 9.

• The (1,3)-entry is the first row of A times the third column of B: c13 = 1 ·0+2 ·1+1 ·1 = 3.

• The (2,1)-entry is the second row of A times the first column of B: c21 = 0 ·1+2 ·0+1 ·(−2) =−2.

• The (2,2)-entry is the second row of A times the second column of B: c22 = 0 ·2+2 ·3+1 ·1 = 7.

• The (2,3)-entry is the second row of A times the third column of B: c23 = 0 ·0+2 ·1+1 ·1 = 3.
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Therefore, we have

AB =

[
−1 9 3

−2 7 3

]
.

♠

As this example shows, calculating matrix products one component at a time can be an extremely repetitive

and tedious process. Fortunately, we can speed this up by considering whole columns at once.

Proposition 4.23: Matrix multiplication, column method

Let A be an m× n-matrix, and let B be an n× p-matrix. Suppose that the columns of B are

b1,b2, . . . ,bp. Then the columns of AB are

Ab1, Ab2, . . . , Abp.

In other words, the k th column of the matrix product AB is equal to A times the k th column of B.

Example 4.24: Matrix multiplication by the column method

Find the matrix product AB by the column method, where

A =

[
1 2 1

0 2 1

]
and B =




1 2 0

0 3 1

−2 1 1


 .

Solution. We multiply A by each of the columns of B:

[
1 2 1

0 2 1

]


1

0

−2


 = 1

[
1

0

]
+0

[
2

2

]
−2

[
1

1

]
=

[
−1

−2

]
,

[
1 2 1

0 2 1

]


2

3

1


 = 2

[
1

0

]
+3

[
2

2

]
+1

[
1

1

]
=

[
9

7

]
,

[
1 2 1

0 2 1

]


0

1

1


 = 0

[
1

0

]
+1

[
2

2

]
+1

[
1

1

]
=

[
3

3

]
.

The resulting three column vectors form the columns of AB. Thus,

AB =

[
−1 9 3

−2 7 3

]
.

♠

Of course, the answer in Example 4.24 is the same as that in Example 4.22. Please convince yourself that

both methods of matrix multiplication give the same answer, since they each ultimately calculate the same
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thing. Nevertheless, with a bit of practice, the column method is much faster, and you can even learn to

multiply matrices in your head! The key to understanding the column method is that each column of B

provides instructions for taking a linear combination of the columns of A. The method works especially

well if B contains many zeros and ones.

Since column vectors are simply n× 1-matrices, and row vectors are 1×m-matrices, we can also

multiply a column vector by a row vector or vice versa.

Example 4.25: Column vector times row vector

Multiply




1

2

1


[ 1 2 1 0

]
.

Solution. Here we are multiplying a 3×1-matrix by a 1×4-matrix, so the result will be a 3×4-matrix.

Using the column method, we can compute this product as follows:




1

2

1


[ 1 2 1 0

]
=




First column︷ ︸︸ ︷


1

2

1


[ 1

]
,

Second column︷ ︸︸ ︷


1

2

1


[ 2

]
,

Third column︷ ︸︸ ︷


1

2

1


[ 1

]
,

Fourth column︷ ︸︸ ︷


1

2

1


[ 0

]




=




1 2 1 0

2 4 2 0

1 2 1 0




♠

Example 4.26: Row vector times column vector

Multiply
[

1 2 3
]



1

2

−1


.

Solution. Here we are multiplying a 1×3-matrix by a 3×1-matrix, so the result will be a 1×1-matrix,

or in other words, a scalar. (We regard a scalar and a 1×1-matrix as the same thing). We have:

[
1 2 3

]



1

2

−1


 = 1 ·1+2 ·2+3 · (−1) = 2.

Therefore, multiplying a row vector by a column vector works very similarly to an ordinary dot product

(except that the dot product is defined between two column vectors, not a row vector and a column vector).

♠

Example 4.27: A multiplication that is not defined

Find BA, where

B =




1 2 0

0 3 1

−2 1 1


 and A =

[
1 2 1

0 2 1

]
.
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Solution. The product BA is not defined, since B is a 3× 3-matrix and A is a 2× 3-matrix. Since the

number of columns of B does not match the number of rows of A, the product is not defined. ♠
Notice that the matrices in Example 4.27 are the same as those in Example 4.22. This demonstrates an

important property of matrix multiplication: it is possible that AB is defined by BA is undefined. Even if

AB and BA are both defined, they may not be equal, as the following example shows. Therefore, matrix

multiplication is not commutative.

Example 4.28: Matrix multiplication is not commutative

Compute AB and BA, where

A =

[
1 2

3 4

]
and B =

[
0 1

1 0

]

Are they equal?

Solution. We have

AB =

[
1 2

3 4

][
0 1

1 0

]
=

[
2 1

4 3

]

and

BA =

[
0 1

1 0

][
1 2

3 4

]
=

[
3 4

1 2

]
.

Therefore, AB and BA are not equal. Matrix multiplication is not commutative. ♠
We have seen two methods for matrix multiplication: one component at a time, and by the column method.

There is also a third method, called the row method. It is exactly symmetric to the column method.

Proposition 4.29: Matrix multiplication, row method

Let A be an m×n-matrix, and let B be an n× p-matrix. Suppose that the rows of A are a1,a2, . . . ,am.

Then the rows of AB are

a1B, a2B, . . . , amB.

In other words, the i th column of the matrix product AB is equal to the i th column of A times B.

Example 4.30: Matrix multiplication by the row method

Find the matrix product AB by the row method, where

A =

[
1 2 1

0 2 1

]
and B =




1 2 0

0 3 1

−2 1 1


 .

Solution. We multiply each of the rows of A by B:

[
1 2 1

]



1 2 0

0 3 1

−2 1 1


 = 1

[
1 2 0

]
+2
[

0 3 1
]
+1
[
−2 1 1

]
=
[
−1 9 3

]
,
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[
0 2 1

]



1 2 0

0 3 1

−2 1 1


 = 0

[
1 2 0

]
+2
[

0 3 1
]
+1
[
−2 1 1

]
=
[
−2 7 3

]
.

The resulting two row vectors form the rows of AB. Thus,

AB =

[
−1 9 3

−2 7 3

]
.

Once again this is the same answer as in Examples 4.24 and 4.22. All three methods give the same result.

But notice how in the row method, each row of A provides instructions for taking a linear combinations of

the rows of B. ♠

We finish this section by introducing an important square matrix called the identity matrix.

Definition 4.31: Identity matrix

The identity matrix of size n×n has ones along the diagonal, and zeros everywhere else. In other

words, it is the matrix
[
δi j

]
where δi j = 1 if i = j and δi j = 0 otherwise. The identity matrix is

always a square matrix. Here are some identity matrices of various sizes.

[
1
]

,

[
1 0

0 1

]
,




1 0 0

0 1 0

0 0 1


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 .

When it is necessary to distinguish which size of identity matrix is being discussed, we will use the

notation In for the n×n identity matrix.

Example 4.32: Multiplying by the identity matrix

Calculate AI, where I is the 2×2 identity matrix and

A =




a11 a12

a21 a22

a31 a32


 .

Solution. We need to calculate

AI =




a11 a12

a21 a22

a31 a32



[

1 0

0 1

]
.

Using the column method, we find that the first column of AI is




a11 a12

a21 a22

a31 a32



[

1

0

]
= 1




a11

a21

a31


+0




a12

a22

a32


 =




a11

a21

a31


 ,
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which is exactly the same as the first column of A. Similarly, the second column of AI is




a11 a12

a21 a22

a31 a32



[

0

1

]
= 0




a11

a21

a31


+1




a12

a22

a32


 =




a12

a22

a32


 ,

which is exactly the same as the second column of A. Therefore

AI =




a11 a12

a21 a22

a31 a32


 = A.

♠

The calculation of the last example generalizes to matrices of all sizes, and is summarized in the following

proposition.

Proposition 4.33: Multiplying by the identity matrix

Let A be any m×n-matrix. Then

ImA = A = AIn.

We can also raise a square matrix to a power. For example, A5 means A ·A ·A ·A ·A.

Example 4.34: Raising a matrix to a power

Compute A3, where

A =

[
1 2

−2 3

]
.

Solution. We have

A3 = A ·A ·A =

[
1 2

−2 3

][
1 2

−2 3

][
1 2

−2 3

]
=

[
−3 8

−8 5

][
1 2

−2 3

]
=

[
−19 18

−18 −1

]
.

♠

4.4.3. Properties of matrix multiplication

We have already seen that matrix multiplication is not in general commutative, i.e., AB and BA may be

different, even if they are both defined. Sometimes it can happen that AB = BA for specific matrices A and

B. In this case, we say that A and B commute.

The following are some properties of matrix multiplication. Notice that these properties hold only

when the size of matrices are such that the products are defined.
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Proposition 4.35: Properties of matrix multiplication

The following properties hold for matrices A,B,C of appropriate dimensions and for scalars r.

• The associative law of multiplication

(AB)C = A(BC).

• The existence of multiplicative units

ImA = A = AIn,

where A is an m×n-matrix.

• Compatibility with scalar multiplication

(rA)B = r(AB) = A(rB).

• The distributive laws of multiplication over addition

A(B+C) = AB+AC,

(B+C)A = BA+CA.

Proof. First, we will prove the associative law. In the proof, it will be useful to use summation notation.

We write
n

∑
i=1

xi = x1 + x2 + . . .+ xn

for the sum of the n numbers x1, . . . ,xn. Assume A is an m× n-matrix, B is an n× p-matrix, and C is a

p× q-matrix. Then both (AB)C and A(BC) are m× q-matrices. We must show that they have the same

entries. The (i,ℓ)-entry of the matrix (AB)C is

((AB)C)iℓ =
p

∑
k=1

(AB)ikckℓ =
p

∑
k=1

(
n

∑
j=1

ai jb jk)ckℓ =
p

∑
k=1

n

∑
j=1

ai jb jkckℓ.

On the other hand, the (i,ℓ)-entry of the matrix A(BC) is

(A(BC))iℓ =
n

∑
j=1

ai j(BC) jℓ =
n

∑
j=1

ai j(
p

∑
k=1

b jkckℓ) =
n

∑
j=1

p

∑
k=1

ai jb jkckℓ.

Both sums are equal, since they are both summing over all the terms where j = 1, . . . ,n and k = 1, . . . , p.

Therefore, (AB)C = A(BC). The fact that identity matrices act as multiplicative units was already men-

tioned in Proposition 4.33. We leave compatibility with scalar multiplication as an exercise. To prove the

first distributive law, assume A is an m×n-matrix, and B and C are n× p-matrices. Then both A(B+C)
and AB+AC are m× p-matrices. We have

(A(B+C))ik =
n

∑
j=1

ai j(B+C) jk =
n

∑
j=1

ai j(b jk + c jk) =
n

∑
j=1

ai jb jk +
n

∑
j=1

ai jc jk = (AB+AC)ik.
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Thus A(B+C) = AB+AC as claimed. The proof of the other distributive law is similar. ♠

Exercises

Exercise 4.4.1 Let A =

[
1 2 0

−1 1 1

]
. Multiply A by each of the following vectors.

(a)




1

0

0


 , (b)




0

1

−1


 , (c)




2

1

0


 , (d)




0

0

0


 , (e)




1

0

3


 .

Exercise 4.4.2 Write the following system of equations in vector form and matrix form.

2x+3y+ z = 4,

x−2z = 3,

2y+ z = 1.

Exercise 4.4.3 Compute the following by columns and by rows. Convince yourself that both method give

the same result. 


a11 a12 a13

a21 a22 a23

a31 a32 a33






x1

x2

x3


 .

Exercise 4.4.4 Write the vector 


x1− x2 +2x3

2x3 + x1

3x3

3x4 +3x2 + x1




in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

Exercise 4.4.5 Write the vector 


x1 +3x2 +2x3

2x3 + x1

6x3

x4 +3x2 + x1




in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.
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Exercise 4.4.6 Consider the matrices

A =

[
1 2 3

2 1 7

]
, B =

[
3 −1 2

−3 2 1

]
, C =

[
1 2

3 1

]
, D =

[
−1 2

2 −3

]
, E =

[
2

3

]
.

Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CB

(e) AE

(f) EA

Exercise 4.4.7 Consider the matrices

A =




1 2

3 2

1 −1


 , B =

[
2 −5 2

−3 2 1

]
, C =

[
1 2

5 0

]
, D =

[
−1 1

4 −3

]
, E =

[
1

3

]

Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CA

(e) AE

(f) EA

(g) BE

(h) DE

Exercise 4.4.8 Let A =

[
−1 −1

3 3

]
. Find all 2×2-matrices B such that AB = 0.

Exercise 4.4.9 Let A =

[
1 2

3 4

]
and B =

[
1 2

3 k

]
. Is it possible to find k such that AB = BA? If so,

what should k equal?

Exercise 4.4.10 Let A =

[
1 2

3 4

]
and B =

[
1 2

1 k

]
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

Exercise 4.4.11 For each pair of matrices, find the (1,2)-entry and (2,3)-entry of the product AB.



4.4. Matrix multiplication 141

(a) A =




1 2 −1

3 4 0

2 5 1


, B =




4 6 −2

7 2 1

−1 0 0




(b) A =




1 3 1

0 2 4

1 0 5


, B =




2 3 0

−4 16 1

0 2 2




Exercise 4.4.12 Compute A4, where

A =

[
1 −3

2 −5

]
.

Hint: you can save some work by calculating A2 times A2.

Exercise 4.4.13 Find 2×2-matrices A, B, and C such that A 6= 0, C 6= B, but AC = AB.

Exercise 4.4.14 Find 2×2-matrices A and B such that A 6= 0 and B 6= 0 but AB = 0.

Exercise 4.4.15 Find 3×3-matrices A and B such that AB 6= BA.

Exercise 4.4.16 Give an example of a matrix A such that A2 = I and yet A 6= I and A 6=−I.

Exercise 4.4.17 A matrix A is called idempotent if A2 = A. Let

A =




2 0 2

1 1 2

−1 0 −1


 .

Show that A is idempotent.

Exercise 4.4.18 Suppose A and B are square matrices of the same size. Which of the following are

necessarily true?

(a) (A+B)2 = A2 +2AB+B2.

(b) (A−B)2 = A2−2AB+B2.

(c) (AB)2 = A2B2.

(d) (A+B)2 = A2 +AB+BA+B2.

(e) A2B2 = A(AB)B.

(f) (A+B)3 = A3 +3A2B+3AB2 +B3.

(g) (A+B)(A−B) = A2−B2.
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4.5 Matrix inverses

Outcomes

A. Determine whether a matrix is invertible, and compute the inverse if it exists.

B. Solve a system of linear equations using matrix algebra.

C. Prove algebraic properties of matrix inverses.

D. Determine whether a matrix is a left inverse, right inverse, or inverse of another matrix.

4.5.1. Definition and uniqueness

We now define a matrix operation which in some ways plays the role of division. We cannot divide by a

matrix, but we can multiply by the inverse of a matrix, which is almost as good.

Definition 4.36: The inverse of a matrix

Let A and B be n×n-matrices. We say that B is an inverse of A if

BA = I and AB = I.

If this is the case, we also write B = A−1. When a matrix has an inverse, it is called invertible.

Example 4.37: Verifying the inverse of a matrix

Let A =

[
1 1

1 2

]
. Check that B =

[
2 −1

−1 1

]
is an inverse of A.

Solution. To check this, multiply

AB =

[
1 1

1 2

][
2 −1

−1 1

]
=

[
1 0

0 1

]
= I

and

BA =

[
2 −1

−1 1

][
1 1

1 2

]
=

[
1 0

0 1

]
= I.

This shows that B is indeed an inverse of A. ♠

Unlike multiplication of scalars, it can happen that A 6= 0 but A does not have an inverse. This is illustrated

in the following example.
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Example 4.38: A non-zero matrix with no inverse

Let A =

[
1 1

1 1

]
. Show that A is not invertible.

Solution. One might think A has an inverse because it does not equal zero. However, note that
[

1 1

1 1

][
−1

1

]
=

[
0

0

]
.

If an inverse A−1 existed, we would have the following:
[
−1

1

]
= I

[
−1

1

]

= (A−1A)

[
−1

1

]

= A−1

(
A

[
−1

1

])

= A−1

([
0

0

])

=

[
0

0

]
.

This says that [
−1

1

]
=

[
0

0

]
,

which is impossible! Therefore, A does not have an inverse. ♠

Can a matrix have more than one inverse? It turns out that this is not the case: the following theorem

shows that if A has an inverse, then the inverse is unique. We can therefore speak of “the” inverse, rather

than just “an” inverse, of A.

Theorem 4.39: Uniqueness of inverse

Suppose A is an n×n-matrix such that both B and C are inverses of A. Then B =C.

Proof. By assumption, both B and C are inverses of A, so we have AB = I, BA = I, AC = I, and CA = I.

Using the associative and unit properties of matrix multiplication, we have:

B = BI = B(AC) = (BA)C = IC =C.

Therefore, B =C, as desired. ♠

4.5.2. Computing inverses

In Example 4.37, we verified that a matrix A had an inverse. But we did not actually compute the inverse:

the inverse B was already given, and we merely checked that AB= I and BA= I. We now explore a method

for finding the inverse when it is not already known what it is.
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Example 4.40: Finding the inverse of a matrix

Find the inverse of the matrix

A =

[
1 −2

2 −3

]
.

Solution. To find A−1, we need to find a matrix

[
x z

y w

]
such that

[
1 −2

2 −3

][
x z

y w

]
=

[
1 0

0 1

]
.

We can multiply these two matrices, and see that in order for this equation to be true, we must solve the

systems of equations
x−2y = 1,

2x−3y = 0,

and
z−2w = 0,

2z−3w = 1.

Writing the augmented matrix for these two systems gives
[

1 −2 1

2 −3 0

]

for the first system and [
1 −2 0

2 −3 1

]

for the second one. Note that both systems have A as their coefficient matrix. Since both systems have the

same coefficient matrix, they both require exactly the same row operations, and we can use the method

of Example 1.33 to solve both systems at the same time. To do so, we create a single augmented matrix

containing both of the right-hand sides:
[

1 −2 1 0

2 −3 0 1

]
.

Then we perform row operations until the coefficient matrix is in reduced echelon form:
[

1 −2 1 0

2 −3 0 1

]
R2 ← R2−2R1≃

[
1 −2 1 0

0 1 −2 1

]
R1 ← R1+2R2≃

[
1 0 −3 2

0 1 −2 1

]
. (4.1)

This corresponds to the following reduced echelon forms for the two original systems of equations:
[

1 0 −3

0 1 −2

]
and

[
1 0 2

0 1 1

]
.

The solution of the first system is x = −3 and y = −2. The solution for the second system is z = 2 and

w = 1. If we take the values found for x, y, z, and w and put them into our inverse matrix, we see that the

inverse is

A−1 =

[
x z

y w

]
=

[
−3 2

−2 1

]
.



4.5. Matrix inverses 145

Notice that this is exactly the right-hand side in the last augmented matrix of (4.1). In other words, all we

really had to do to find the inverses were the row operations in (4.1). The inverse can be read off directly

from the result. ♠

The example suggests a general method for finding the inverse of a matrix, which we summarize in the

following algorithm.

Algorithm 4.41: Finding the inverse of a matrix

Suppose A is an n×n-matrix. To find A−1 if it exists, form the augmented n×2n-matrix

[A | I] .

If possible, do row operations until you obtain an n×2n-matrix of the form

[I | B] .

If this can be done, then A is invertible and A−1 = B. If it is not possible (i.e., if the reduced echelon

form of A has less than n pivot entries), then A is not invertible.

This algorithm shows how to find the inverse if it exists. It also tells us if A does not have an inverse.

Example 4.42: Finding the inverse of a matrix

Let A =




1 2 2

1 0 2

3 1 −1


. Find A−1 if it exists.

Solution. We set up the augmented matrix and reduce it to reduced echelon form.

[A | I] =




1 2 2 1 0 0

1 0 2 0 1 0

3 1 −1 0 0 1




R2 ← R2−R1

R3 ← R3−3R1≃




1 2 2 1 0 0

0 −2 0 −1 1 0

0 −5 −7 −3 0 1




R1 ← 7R1

R3 ← −2R3≃




7 14 14 7 0 0

0 −2 0 −1 1 0

0 10 14 6 0 −2




R1 ← R1+7R2

R3 ← R3+5R2≃




7 0 14 0 7 0

0 −2 0 −1 1 0

0 0 14 1 5 −2




R1 ← R1−R3≃




7 0 0 −1 2 2

0 −2 0 −1 1 0

0 0 14 1 5 −2



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R1 ← 1
7 R1

R2 ← − 1
2 R2

R3 ← 1
14 R3≃




1 0 0 −1
7

2
7

2
7

0 1 0 1
2 −1

2 0

0 0 1 1
14

5
14 −1

7


 .

Notice that the last augmented matrix is of the form [I | B], where the left-hand side is the 3×3 identity

matrix. Therefore, the inverse is the 3×3-matrix on the right-hand side, given by

A−1 =




−1
7

2
7

2
7

1
2 −1

2 0

1
14

5
14 −1

7


 .

♠

When looking for the inverse of a matrix, it can happen that the left-hand side cannot be row reduced to

the identity matrix. The following is an example of this situation.

Example 4.43: A non-invertible matrix

Let A =




1 −2 2

1 0 2

2 −2 4


. Find A−1 if it exists.

Solution. We write the augmented matrix

[A | I] =




1 −2 2 1 0 0

1 0 2 0 1 0

2 −2 4 0 0 1




and proceed to do row operations attempting to obtain
[
I | A−1

]
. After a few row operations, we have




1 −2 2 1 0 0

0 2 0 −1 1 0

0 0 0 −1 −1 1


 .

At this point, we see that the coefficient matrix has rank 2, i.e., there are only two pivot entries. This

means there is no way to obtain I on the left-hand side of this augmented matrix. Hence, there is no way

to complete the algorithm, and the inverse of A does not exist. ♠

If the algorithm provides an inverse, it is always possible to double-check that your answer is correct. To

do so, use the method demonstrated in Example 4.37. Check that the products AA−1 and A−1A both equal

the identity matrix. Through this method, you can always ensure that you have calculated A−1 properly.



4.5. Matrix inverses 147

4.5.3. Using the inverse to solve a system of equations

One way in which the inverse of a matrix is useful is to find the solution of a system of linear equations.

Recall from Definition 4.20 that we can write a system of equations in matrix form, which is in the form

Ax = b.

Suppose we find the inverse A−1 of the matrix A. Then we can multiply both sides of this equation by A−1

on the left and simplify to obtain

x = A−1b.

Therefore we can find x, the solution to the system, by computing x=A−1b. Note that once we have found

A−1, we can easily get the solution for different right-hand sides (different b). It is always just A−1b.

Example 4.44: Using the inverse to solve a system of equations

Consider the following system of equations. Use the inverse of a suitable matrix to solve this system.

x+ z = 1

x− y+ z = 3

x+ y− z = 2

Solution. First, we can write the system in matrix form

Ax =




1 0 1

1 −1 1

1 1 −1






x

y

z


=




1

3

2


= b.

The inverse of A is

A−1 =




0 1
2

1
2

1 −1 0

1 −1
2 −1

2


 .

From here, the solution to the system Ax = b is found by x = A−1b, i.e.,



x

y

z


=




0 1
2

1
2

1 −1 0

1 −1
2 −1

2







1

3

2


=




5
2

−2

−3
2


 .

♠

What if the right-hand side had been b =




0

1

3


? In this case, the solution would be given by




x

y

z


=




0 1
2

1
2

1 −1 0

1 −1
2 −1

2







0

1

3


=




2

−1

−2


 .

This illustrates that for a system Ax = b where A−1 exists, it is easy to find the solution when the vector b

is changed.
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4.5.4. Properties of the inverse

The following are some algebraic properties of matrix inverses.

Proposition 4.45: Properties of the inverse

Let A and B be n×n-matrices, I the n×n-identity matrix. Then the following hold.

1. I is invertible and I−1 = I.

2. If A and B are invertible then AB is invertible, and (AB)−1 = B−1A−1.

3. If A is invertible then so is A−1, and (A−1)−1 = A.

4. If A is invertible then so is Ak, and (Ak)−1 = (A−1)k.

5. If A is invertible and p is a non-zero scalar, then pA is invertible and (pA)−1 = 1
p
A−1.

4.5.5. Right and left inverses

So far, we have only talked about the inverses of square matrices. But what about matrices that are not

square? Can they be invertible? It turns out that non-square matrices can never be invertible. However,

they can have left inverses or right inverses.

Definition 4.46: Left and right inverses

Let A be an m×n-matrix and B an n×m-matrix. We say that B is a left inverse of A if

BA = I.

We say that B is a right inverse of A if

AB = I.

If A has a left inverse, we also say that A is left invertible. Similarly, if A has a right inverse, we

say that A is right invertible.

Example 4.47: Right inverse

Let

A =

[
1 0 0

0 1 0

]
and B =




1 0

0 1

0 0


 .

Show that B is a right inverse, but not a left inverse, of A.
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Solution. We compute

AB =

[
1 0 0

0 1 0

]


1 0

0 1

0 0


 =

[
1 0

0 1

]
= I,

BA =




1 0

0 1

0 0



[

1 0 0

0 1 0

]
=




1 0 0

0 1 0

0 0 0


 6= I.

Therefore, B is a right inverse, but not a left inverse, of A. ♠

Recall from Definition 4.36 that B is called an inverse of A if it is both a left inverse and a right inverse. A

crucial fact is that invertible matrices are always square.

Theorem 4.48: Invertible matrices are square

Let A be an m×n-matrix.

• If A is left invertible, then m≥ n.

• If A is right invertible, then m≤ n.

• If A is invertible, then m = n.

In particular, only square matrices can be invertible.

Proof. To prove the first claim, assume that A is left invertible, i.e., assume that BA = I for some n×m-

matrix B. We must show that m≥ n. Assume, for the sake of obtaining a contradiction, that this is not the

case, i.e., that m < n. Then the matrix A has more columns than rows. It follows that the homogeneous

system of equations Ax = 0 has a non-trivial solution; let x be such a solution. We obtain a contradiction

by a similar method as in Example 4.38. Namely, we have

x = I x = (BA)x = B(Ax) = B0 = 0,

contradicting the fact that x was non-trivial. Since we got a contradiction from the assumption that m < n,

it follows that m≥ n.

The second claim is proved similarly, but exchanging the roles of A and B. The third claim follows

directly from the first two claims, because every invertible matrix is both left and right invertible. ♠

Of course, not all square matrices are invertible. In particular, zero matrices are not invertible, along with

many other square matrices.
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Exercises

Exercise 4.5.1 For each of the following pairs of matrices, determine whether B is an inverse of A.

(a)

A =

[
2 4

1 3

]
, B =

1

2

[
3 −4

−1 2

]
.

(b)

A =

[
1 −2

4 −7

]
, B =

[
−1 2

−4 7

]
.

(c)

A =




4 1 3

2 1 2

1 0 1


 , B =




1 −1 −1

0 1 −2

−1 1 2


 .

Exercise 4.5.2 Suppose AB = AC and A is an invertible n×n-matrix. Does it follow that B =C? Explain

why or why not.

Exercise 4.5.3 Suppose AB = AC and A is a non-invertible n× n-matrix. Does it follow that B = C?

Explain why or why not.

Exercise 4.5.4 For each of the following matrices, find the inverse if possible. If the inverse does not exist,

explain why.

A =

[
2 1

−1 3

]
, B =

[
0 1

5 3

]
, C =

[
2 1

3 0

]
, D =

[
2 1

4 2

]
, E =

[
0 1 2

1 2 5

]
.

Exercise 4.5.5 For each of the following matrices, find the inverse if possible. If the inverse does not exist,

explain why.

A =




1 2 3

2 1 4

1 0 2


 , B =




1 0 3

2 3 4

1 0 2


 , C =




1 2 3

2 1 4

4 5 10


 , D =




1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2


 .

Exercise 4.5.6 Let A be a 2×2 invertible matrix, with A =

[
a b

c d

]
. Find a formula for A−1 in terms of

a,b,c,d.

Exercise 4.5.7 Using the inverse of the matrix, find the solution to the systems:
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(a) [
2 4

1 1

][
x

y

]
=

[
1

2

]
,

(b) [
2 4

1 1

][
x

y

]
=

[
2

0

]
.

Now give the solution in terms of a and b to

[
2 4

1 1

][
x

y

]
=

[
a

b

]
.

Exercise 4.5.8 Using the inverse of the matrix, find the solution to the systems:

(a) 


1 0 3

2 3 4

1 0 2






x

y

z


=




1

0

1


 ,

(b) 


1 0 3

2 3 4

1 0 2






x

y

z


=




3

−1

−2


 .

Now give the solution in terms of a,b, and c to the following:




1 0 3

2 3 4

1 0 2






x

y

z


=




a

b

c


 .

Exercise 4.5.9 Show that if A is an n× n invertible matrix and X and B are n× 1-matrices such that

AX = B, then X = A−1B.

Exercise 4.5.10 Prove that if A−1 exists and AX = 0 then X = 0.

Exercise 4.5.11 Show (AB)−1 = B−1A−1 by verifying that

AB(B−1A−1) = I and B−1A−1(AB) = I.

Exercise 4.5.12 Is it possible to have matrices A and B such that AB = I, while BA = 0? If it is possible,

give an example of such matrices. If it is not possible, explain why.

Exercise 4.5.13 Show that (ABC)−1 =C−1B−1A−1 by verifying that

(ABC)(C−1B−1A−1) = I and (C−1B−1A−1)(ABC) = I.
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Exercise 4.5.14 If A is invertible, show that A2 is invertible and (A2)−1 = (A−1)2.

Exercise 4.5.15 If A is invertible, show (A−1)−1 = A. Hint: Use the uniqueness of inverses.

Exercise 4.5.16 Determine whether B is a right inverse, left inverse, both, or neither of A.

(a)

A =

[
4 2 1

2 1 1

]
, B =




1 −1

−1 1

−1 2


 .

(b)

A =




1 0

0 1

0 2


 , B =

[
1 2 −1

0 1 0

]
.

(c)

A =

[
1 2

3 7

]
, B =

[
7 −2

−3 1

]
.

(d)

A =

[
1 2

3 1

]
, B =

[
−1 2

1 −1

]
.

Exercise 4.5.17 Show that right inverses are not unique by giving an example of matrices A,B,C such

that both B and C are right inverses of A, but B 6=C.

Exercise 4.5.18 Solve the following system of equations by using the inverse of a suitable matrix.

8x+2y+3z =−1

y−2z = 2

x+ z = 1

Exercise 4.5.19 Suppose that A,B,C,D are n×n-matrices, and that all relevant matrices are invertible.

Further, suppose that (A+B)−1 =CB−1. Solve this equation for A (in terms of B and C), B (in terms of A

and C), and C (in terms of A and B).

Exercise 4.5.20 Which of the following matrices is right invertible? Find a right inverse if one exists. If

possible, find two different right inverses.

A =

[
1 2 3

0 1 0

]
B =

[
1 1 2

2 2 4

]
C =




1 2

1 0

0 1


 D =

[
1 2

2 3

]

Exercise 4.5.21 Which of the following matrices is left invertible? Find a left inverse if one exists. If

possible, find two different left inverses.

A =

[
1 2 1

0 1 0

]
B =

[
1 1

2 3

]
C =




1 0

0 1

2 1


 D =




1 0

2 0

3 0



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4.6 Elementary matrices

Outcomes

A. Use multiplication by elementary matrices to apply row operations.

B. Find the elementary matrix corresponding to a particular row operation.

C. Write the reduced echelon form of a matrix A in the form R =UA, where U is invertible.

D. Write a matrix as a product of elementary matrices.

4.6.1. Elementary matrices and row operations

Recall from Definition 1.14 that there are three kinds of elementary row operations on matrices:

1. Switch two rows.

2. Multiply a row by a non-zero number.

3. Add a multiple of one row to another row.

The purpose of this section is to show that each of these row operations corresponds to a special type of

invertible matrix called an elementary matrix.

Example 4.49: Elementary matrix for switching two rows

Let

E =




1 0 0

0 0 1

0 1 0


 .

What is the effect of multiplying E by an arbitrary 3×n-matrix A?

Solution. Consider an arbitrary 3×n-matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n


 .

We compute the product EA by the row method:

EA =




1 0 0

0 0 1

0 1 0






a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n


 =




a11 a12 · · · a1n

a31 a32 · · · a3n

a21 a22 · · · a2n


 .
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So the effect of multiplying A by E on the left is exactly the same as switching rows 2 and 3. We say that

E is the elementary matrix for switching rows 2 and 3. ♠

Example 4.50: Elementary matrix for multiplying a row by a non-zero number

Let

E =




1 0 0

0 k 0

0 0 1


 .

What is the effect of multiplying E by an arbitrary 3×n-matrix A?

Solution. We compute the product EA by the row method:

EA =




1 0 0

0 k 0

0 0 1






a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n


 =




a11 a12 · · · a1n

ka21 ka22 · · · ka2n

a31 a32 · · · a3n


 .

So the effect of multiplying A by E on the left is exactly the same as multiplying row 2 by the scalar k. We

say that E is the elementary matrix for multiplying row 2 by k. ♠

Example 4.51: Elementary matrix for adding a multiple of one row to another row

Let

E =




1 0 0

0 1 0

0 k 1


 .

What is the effect of multiplying E by an arbitrary 3×n-matrix A?

Solution. Once again we compute the product EA:

EA =




1 0 0

0 1 0

0 k 1






a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n


 =




a11 a12 · · · a1n

a21 a22 · · · a2n

a31 + ka21 a32 + ka22 · · · a3n + ka2n


 .

So the effect of multiplying A by E on the left is exactly the same as adding k times row 2 to row 3. We

say that E is the elementary matrix for adding k times row 2 to row 3. ♠

As these examples show, performing each type of elementary row operation is the same as multiplying (on

the left) by a certain invertible matrix. These matrices are called the elementary matrices. In the above

examples, we have only considered 3×3-elementary matrices, but they exist for other sizes too. The fol-

lowing definition makes this precise. It also shows how to calculate the elementary matrix corresponding

to any elementary row operation.

Definition 4.52: Elementary matrices and row operations

Let E be an n× n-matrix. Then E is an elementary matrix if it is the result of applying one

elementary row operation to the n×n identity matrix.
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Example 4.53: Finding an elementary matrix

Consider the elementary row operation of adding 5 times row 3 to row 1 of a 4×n-matrix. Find the

elementary matrix E corresponding to this row operation.

Solution. Following Definition 4.52, all we have to do is apply the desired row operation to the 4× 4-

identity matrix: 


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




R1 ← R1+5R3≃




1 0 5 0

0 1 0 0

0 0 1 0

0 0 0 1


 = E.

♠

We can double-check that multiplying E by any 4×n-matrix does indeed have the desired effect:




1 0 5 0

0 1 0 0

0 0 1 0

0 0 0 1







a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n

a41 a42 · · · a4n


 =




a11 +5a31 a12 +5a32 · · · a1n +5a3n

a21 a22 · · · a2n

a31 a32 · · · a3n

a41 a42 · · · a4n


 .

The fact that this always works is the content of the following theorem.

Theorem 4.54: Multiplication by an elementary matrix and row operations

Performing any of the three elementary row operations on a matrix A is the same as taking the

product EA, where E is the elementary matrix obtained by applying the desired row operation to

the identity matrix.

4.6.2. Inverses of elementary matrices

Suppose we have applied a row operation to a matrix A. Consider the row operation required to return A to

its original form, i.e., to undo the row operation. It turns out that this action is described by the inverse of

an elementary matrix. The following theorem ensures that the inverse of each elementary matrix is itself

an elementary matrix.

Theorem 4.55: Inverses of elementary matrices

Every elementary matrix is invertible and its inverse is also an elementary matrix.

In fact, the inverse of an elementary matrix is constructed by doing the reverse row operation on I. E−1 is

obtained by performing the row operation which would carry E back to I.

• If E is obtained by switching rows i and j, then E−1 is also obtained by switching rows i and j.

• If E is obtained by multiplying row i by the scalar k, then E−1 is obtained by multiplying row i by

the scalar 1
k
.
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• If E is obtained by adding k times row i to row j, then E−1 is obtained by subtracting k times row i

from row j.

Example 4.56: Inverse of an elementary matrix

Find E−1, where E is the elementary matrix

E =

[
1 0

0 2

]

Solution. E is obtained from the 2× 2 identity matrix by multiplying the second row by 2. In order to

carry E back to the identity, we need to multiply the second row of E by 1
2 . Hence, E−1 is given by

E−1 =

[
1 0

0 1
2

]
.

♠

4.6.3. Elementary matrices and reduced echelon forms

Suppose an m×n-matrix A is row reduced to its reduced echelon form. By tracking each row operation

completed, this row reduction can be performed through multiplication by elementary matrices. The

following theorem uses this fact.

Theorem 4.57: The form R =UA

Let A be any m× n-matrix and let R be its reduced echelon form. Then there exists an invertible

m×m-matrix U such that

R =UA.

Specifically, U can be computed as the product (from right to left) of the elementary matrices of all

row operations used to convert A to reduced echelon form.

Example 4.58: The form R =UA

Let

A =




0 1

1 0

2 0


 .

Find the reduced echelon form of A and write it in the form R =UA, where U is invertible.

Solution. To find the reduced echelon form R, we row reduce A. For each step, we will record the appro-

priate elementary matrix. First, switch rows 1 and 2.



0 1

1 0

2 0


 R1 ↔ R2≃




1 0

0 1

2 0


 .
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The corresponding elementary matrix is E1 =




0 1 0

1 0 0

0 0 1


, i.e.,




0 1 0

1 0 0

0 0 1






0 1

1 0

2 0


 =




1 0

0 1

2 0


 .

Next, subtract 2 times the first row from the third row.




1 0

0 1

2 0


 R3 ← R3−2R1≃




1 0

0 1

0 0


 .

The corresponding elementary matrix is E2 =




1 0 0

0 1 0

−2 0 1


, i.e.,




1 0 0

0 1 0

−2 0 1






1 0

0 1

2 0


 =




1 0

0 1

0 0


 .

Notice that the resulting matrix is R, the required reduced echelon form of A. We can then write

R = E2E1A

= UA.

It remains to compute U :

U = E2E1 =




1 0 0

0 1 0

−2 0 1






0 1 0

1 0 0

0 0 1


 =




0 1 0

1 0 0

0 −2 1


 .

We can verify that R =UA holds for this matrix U :

UA =




0 1 0

1 0 0

0 −2 1






0 1

1 0

2 0


 =




1 0

0 1

0 0


 = R.

♠

While the process used in the above example is reliable and simple when only a few row operations are

used, it becomes cumbersome in a case where many row operations are needed to carry A to R. The

following theorem provides an alternate way to find the matrix U .

Theorem 4.59: Finding the matrix U

Let A be an m× n-matrix and let R be its reduced echelon form. Then R = UA, where U is an

invertible m×m-matrix found by forming the augmented matrix [A | I] and row reducing to [R |U ].
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Let’s revisit the above example using the process outlined in Theorem 4.59.

Example 4.60: The form R =UA, revisited

Let A =




0 1

1 0

2 0


. Use the process of Theorem 4.59 to find U such that R =UA.

Solution. First, we set up the augmented matrix [A | I]:



0 1 1 0 0

1 0 0 1 0

2 0 0 0 1


 .

Now, we row reduce until the left-hand side is in reduced echelon form:



0 1 1 0 0

1 0 0 1 0

2 0 0 0 1


 R1 ↔ R2≃




1 0 0 1 0

0 1 1 0 0

2 0 0 0 1




R3 ← R3−2R1≃




1 0 0 1 0

0 1 1 0 0

0 0 0 −2 1


 .

The left-hand side of this augmented matrix is R, and the right-hand side is U . Comparing this to the

matrices R and U we found in Example 4.58, we see that the same matrices are obtained regardless of

which process is used. ♠

4.6.4. Writing an invertible matrix as a product of elementary matrices

Recall from Algorithm 4.41 that an n× n-matrix A is invertible if and only if A can be carried to the

n×n identity matrix using elementary row operations. Combining this with our discussion of elementary

matrices we see that A is invertible if and only if it can be written as a product of elementary matrices.

This is the content of the following theorem.

Theorem 4.61: Product of elementary matrices

Let A be an n× n-matrix. Then A is invertible if and only if it can be written as a product of

elementary matrices.

Proof. If A is an invertible n×n-matrix, then its reduced echelon form is the n×n identity matrix I. By

Theorem 4.57, we can write I =UA, where U = Ek · · ·E2E1 is a product of elementary matrices. Then

A = U−1 = E−1
1 E−1

2 · · ·E−1
k .

By Theorem 4.55, if Ei is an elementary matrix, then so is E−1
i . Therefore, A has been written as a product

of elementary matrices. Conversely, if A can be written as a product of elementary matrices, then A is

clearly invertible, because each elementary matrix is invertible. ♠
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Example 4.62: Product of elementary matrices

Let A =




0 1 0

1 1 0

0 −2 1


. Write A as a product of elementary matrices.

Solution. Following the process of Theorem 4.61, we first row-reduce A to its reduced echelon form,

recording each row operation as an elementary matrix.




0 1 0

1 1 0

0 −2 1


 R1 ↔ R2≃




1 1 0

0 1 0

0 −2 1


 with elementary matrix E1 =




0 1 0

1 0 0

0 0 1


 ,




1 1 0

0 1 0

0 −2 1


 R1 ← R1−R2≃




1 0 0

0 1 0

0 −2 1


 with elementary matrix E2 =




1 −1 0

0 1 0

0 0 1


 ,




1 0 0

0 1 0

0 −2 1


 R3 ← R3+2R2≃




1 0 0

0 1 0

0 0 1


 with elementary matrix E3 =




1 0 0

0 1 0

0 2 1


 .

Notice that the reduced echelon form of A is I. Hence I = UA where U = E3E2E1. It follows that

A =U−1 = E−1
1 E−1

2 E−1
3 , and so we have succeeded in writing A as a product of elementary matrices

A = E−1
1 E−1

2 E−1
3 =




0 1 0

1 0 0

0 0 1






1 1 0

0 1 0

0 0 1






1 0 0

0 1 0

0 −2 1


 .

In particular, it follows that A is invertible. ♠

4.6.5. More properties of inverses

In this section, we will use elementary matrices to prove a useful theorem about the inverse of a square

matrix. We start with an observation about the echelon form of a right invertible matrix.

Lemma 4.63: Echelon form of a right invertible matrix

Suppose that A is right invertible. Then the reduced echelon form of A does not have a row of zeros.

Proof. Let R be the reduced echelon form of A. Then by Theorem 4.57, we can write R = UA for some

invertible square matrix U . By assumption, we have AB = I, and therefore

R(BU−1) = (UA)(BU−1) = U(AB)U−1 = UIU−1 = UU−1 = I.

If R had a row of zeros, then so would the product R(BU−1). But since the identity matrix I does not have

a row of zeros, neither does R. ♠
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Theorem 4.64: Right invertible square matrices are invertible

Suppose A and B are square matrices such that AB = I. Then it follows that BA = I, and therefore

B = A−1. In particular, a square matrix is right invertible if and only if it is left invertible if and only

if it is invertible.

Proof. Assume A and B are square matrices such that AB = I. Let R be the reduced echelon form of A.

Then by Theorem 4.57, we can write R =UA where U is an invertible matrix. Since AB = I, we know by

Lemma 4.63 that R does not have a row of zeros. Since R is a square reduced echelon form with no row

of zeros, each column must be a pivot column, and it follows that R = I. Hence, UA = I, and therefore A

is left invertible. Moreover, we have

B = IB = (UA)B = U(AB) = UI = U ,

and therefore B =U . It follows that BA =UA = I, as claimed.

To prove the last claim, note that we just proved that for square matrices, AB = I implies BA = I.

Therefore, every right inverse of A is also a left inverse, and therefore an inverse. But of course, we also

have that BA = I implies AB = I. This is just the same theorem, with the roles of A and B interchanged.

Therefore, every left inverse of A is also a right inverse. ♠

This theorem is very useful, because it allows us to test only one of the products AB or BA in order to

check that B is the inverse of A, saving us half of the work. It is important to stress, however, that this

only works for square matrices. As we saw in Example 4.47, non-square matrices can be right invertible

without being left invertible, or vice versa.

Exercises

Exercise 4.6.1 For each of the following pairs of matrices, suppose a row operation is applied to A and

the result is B. Find the elementary matrix E that represents this row operation.

(a)

A =

[
2 3

1 2

]
, B =

[
1 2

2 3

]
.

(b)

A =

[
4 0

2 1

]
, B =

[
8 0

2 1

]
.

(c)

A =

[
1 −3

0 5

]
, B =

[
1 −3

2 −1

]
.

Exercise 4.6.2 For each of the following pairs of matrices, suppose a row operation is applied to A and

the result is B.
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• Find the elementary matrix E such that EA = B.

• Find the inverse of E, E−1, such that E−1B = A.

(a)

A =




1 2 1

0 5 1

2 −1 4


 , B =




1 2 1

2 −1 4

0 5 1


 .

(b)

A =




1 2 1

0 5 1

2 −1 4


 , B =




1 2 1

0 10 2

2 −1 4


 .

(c)

A =




1 2 1

0 5 1

2 −1 4


 , B =




1 2 1

0 5 1

1 −1
2 2


 .

(d)

A =




1 2 1

0 5 1

2 −1 4


 , B =




1 2 1

2 4 5

2 −1 4


 .

Exercise 4.6.3 Find the reduced echelon form of each of the following matrices A, and write it in the form

R =UA where U is invertible.

(a)




1 3 1

0 2 4

2 6 −2


 , (b)




0 1

3 −1

2 6


 , (c)

[
0 1 −2

1 3 2

]
, (d)




1 1 0

0 1 1

1 0 1


 .

Exercise 4.6.4 Write each of the following matrices as a product of elementary matrices, if possible, or

else say why it is not possible.

(a)

[
1 3

0 2

]
, (b)

[
2 1

5 3

]
, (c)




1 2 0

0 1 3

2 4 1


 , (d)




0 1 2

1 3 7

1 1 3


 .
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4.7 The transpose

Outcomes

A. Calculate the transpose of a matrix.

B. Determine whether a matrix is symmetric, antisymmetric, or neither.

C. Manipulate algebraic expressions involving the transpose of matrices.

Another important operation on matrices is that of taking the transpose. The transpose of a matrix is

obtained by turning the rows into columns and vice versa.

Definition 4.65: The transpose of a matrix

Let A be an m×n-matrix. Then the transpose of A, denoted AT , is the n×m-matrix whose (i, j)-
entry is the ( j, i)-entry of A.

A =




a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn


 , AT =




a11 a21 · · · am1
...

...
. . .

...

a1n a2n · · · amn


 .

Example 4.66: The transpose of a matrix

Find the transpose of the following matrix:

A =

[
1 2 6

3 5 4

]
.

Solution. The transpose is

AT =




1 3

2 5

6 4


 .

Notice that A is a 2×3-matrix, while AT is a 3×2-matrix. ♠

We have already used a special case of the transpose since Chapter 2, when we wrote
[

1 2 3
]T

as a

space-saving notation for the column vector 


1

2

3


 .

The transpose of a matrix satisfies the following properties:
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Proposition 4.67: Properties of the transpose

Let A and B be matrices of appropriate sizes, and r a scalar. Then the following hold.

1. (AT )T = A.

2. (A+B)T = AT +BT .

3. (rA)T = rAT .

4. (AB)T = BT AT .

5. 0T = 0.

6. IT = I.

7. (A−1)T = (AT )−1, if A is invertible.

Recall that a column vector is the same thing as a n×1-matrix. Using the transpose, we can make precise

the connection between the dot product and the matrix product. Namely, let

v =




v1
...

vn


 and w =




w1
...

wn




by column vectors. Then

v·w = v1w1 + . . .+ vnwn =
[

v1 · · · vn

]



w1
...

wn


 = vT w.

In other words, the dot product of column vectors v and w is the same thing as the matrix product vT w.

We can also use the notion of transpose to define what it means for a matrix to be symmetric and

antisymmetric.

Definition 4.68: Symmetric and antisymmetric matrices

An n× n-matrix A is said to be symmetric if AT = A. It is said to be antisymmetric (sometimes

also called skew symmetric) if AT =−A.

Example 4.69: Symmetric and antisymmetric matrices

Let

A =




2 1 3

1 5 −3

3 −3 7


 , B =




0 1 3

−1 0 2

−3 −2 0


 , and C =




0 1 3

1 5 −3

1 3 0


 .

Then A is symmetric because AT = A, B is antisymmetric because BT = −B, and C is neither

symmetric nor antisymmetric because CT is equal to neither C nor −C.
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Exercises

Exercise 4.7.1 Let X =
[
−1 −1 1

]
and Y =

[
0 1 2

]
. Find XTY and XY T if possible.

Exercise 4.7.2 Consider the matrices

A =




1 2

3 2

1 −1


 , B =

[
2 −5 2

−3 2 1

]
, C =

[
1 2

5 0

]
, D =

[
−1 1

4 −3

]
, E =

[
1

3

]
.

Find the following if possible. If it is not possible explain why.

(a) −3AT .

(b) 3B−AT .

(c) ET B.

(d) EET .

(e) BT B.

(f) CAT .

(g) DT BE.

Exercise 4.7.3 Which of the following matrices are symmetric, antisymmetric, both, or neither?

A =

[
0 1

−1 0

]
, B =

[
2 1

1 3

]
, C =

[
1 2

−2 0

]
, D =

[
0 0

0 0

]
.

Exercise 4.7.4 Suppose A is a matrix that is both symmetric and antisymmetric. Show that A = 0.

Exercise 4.7.5 Let A be an n× n-matrix. Show A equals the sum of a symmetric and an antisymmetric

matrix. Hint: Show that 1
2(A

T +A) is symmetric and then consider using this as one of the matrices.

Exercise 4.7.6 Show that the main diagonal of every antisymmetric matrix consists of only zeros. Recall

that the main diagonal consists of every entry of the matrix which is of the form aii.

Exercise 4.7.7 Show that for m×n-matrices A,B and scalars r,s, the following holds:

(rA+ sB)T = rAT + sBT .

Exercise 4.7.8 Let A be a real m×n-matrix and let u ∈ Rn and v ∈ Rm. Show (Au)·v = u·(AT v).

Exercise 4.7.9 Show that if A is an invertible n×n-matrix, then so is AT and (AT )−1 = (A−1)T .

Exercise 4.7.10 Suppose A is invertible and symmetric. Show that A−1 is symmetric.
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4.8 Matrix arithmetic modulo p

Outcomes

A. Perform matrix operations over the field Zp.

In Section 1.8, you learned that most of linear algebra can be done over scalars from any field K, and not

just the real numbers. You also learned that Zp, the set of integers modulo p, is a field whenever p is a

prime number.

Indeed, all of the operations on matrices that we covered in this chapter make sense over any field:

addition, scalar multiplication, matrix multiplication, inverses, elementary matrices, and the transpose.

Example 4.70: A matrix product over Z5

Compute the matrix product AB over the field Z5, where

A =

[
1 0 4

2 3 1

]
and B =




3 1

4 0

2 2


 .

Solution. For example, the (1,1)-entry of AB is calculated by multiplying the first row of A by the first

column of B, i.e.,

c11 = 1 ·3+0 ·4+4 ·2 = 3+0+3 = 1,

keeping in mind that all arithmetic operations are done in Z5. We repeat the same for the other entries and

obtain

AB =

[
1 0 4

2 3 1

]


3 1

4 0

2 2


 =

[
1 4

0 4

]
.

♠

Example 4.71: An inverse over Z7

Compute the inverse of the matrix

A =




1 4 2

0 6 2

5 0 3




with scalars in the field Z7.

Solution. We use exactly the method of Algorithm 4.41, i.e., we set up the augmented matrix [A | I] and

reduce it to reduced echelon form. The only thing we have to keep in mind is that all operations are done
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modulo 7. Also, as usual, instead of dividing by a scalar, we must multiply by its inverse.

[A | I] =




1 4 2 1 0 0

0 6 2 0 1 0

5 0 3 0 0 1




R3 ← R3+2R1≃




1 4 2 1 0 0

0 6 2 0 1 0

0 1 0 2 0 1




R2 ↔ R3≃




1 4 2 1 0 0

0 1 0 2 0 1

0 6 2 0 1 0




R3 ← R3+R2≃




1 4 2 1 0 0

0 1 0 2 0 1

0 0 2 2 1 1




R3 ← 2−1R3 = 4R3≃




1 4 2 1 0 0

0 1 0 2 0 1

0 0 1 1 4 4




R1 ← R1−4R2≃




1 0 2 0 0 3

0 1 0 2 0 1

0 0 1 1 4 4




R1 ← R1−2R3≃




1 0 0 5 6 2

0 1 0 2 0 1

0 0 1 1 4 4


 .

Therefore, the inverse is

A−1 =




5 6 2

2 0 1

1 4 4


 .

As usual, we can double-check that we didn’t make any mistakes by calculating

AA−1 =




1 4 2

0 6 2

5 0 3






5 6 2

2 0 1

1 4 4


 =




1 0 0

0 1 0

0 0 1


 = I.

So indeed, we have calculated the inverse correctly. ♠

Exercises

Exercise 4.8.1 Let

A =

[
1 3

5 2

]
, B =

[
1 0 2

0 2 1

]
, C =




2 1 0

1 0 2

0 3 1




and compute the following over Z11:



4.9. Application: Cryptography 167

(a) 3A,

(b) A2,

(c) AB,

(d) BC,

(e) C−1.

4.9 Application: Cryptography

Cryptography is about encoding a message so that it is hard for a third party to read. The original message

is called the plaintext and the encrypted message is called the ciphertext. The process of turning a

plaintext into the corresponding ciphertext is called encryption, and the process of turning a ciphertext

into the corresponding plaintext is called decryption. An encryption and decryption method is also called

a cipher. Modern ciphers are designed in such a way that the cipher itself is not secret, but the encryption

depends on a secret key. A cipher should be designed so that decryption is easy for a person who knows

the key, but difficult for everybody else. The art of designing ciphers is called cryptography, and the art

of breaking ciphers is called cryptanalysis.

In order to be able to define ciphers using algebraic operations, we start by encoding strings as se-

quences of numbers. To that end, we assign a number to each letter of the alphabet, as well as the special

symbols “space”, “comma”, and “period”, according to the following scheme.

Space A B C D . . . Z Comma Period

0 1 2 3 4 . . . 26 27 28

In practical applications, one would probably use a larger set of symbols and a standard encoding such as

ASCII or UTF-8. But the above 29 symbols will be sufficient for our purposes. It will also come in handy

that 29 is prime.

Example 4.72: Representing strings as sequences of numbers

Convert the string “Attack at dawn” to a sequence of numbers. Convert the sequence of numbers

9,0,12,9,11,5,0,3,15,4,5,19,28 to a string.

Solution. We have A = 1, T = 20, T = 20, A = 1, C = 3, K = 11, Space = 0, and so on. Continuing in

this way, the encoding of “Attack at dawn” is 1,20,20,1,3,11,0,1,20,0,4,1,23,14. Conversely, we have

9 = I, 0 = Space, 12 = L, 9 = I, 11 = K, 5 = E, and so on. We find that the decoded string is “I like codes.”

♠

There are many different ways to define ciphers. Some of the oldest known ciphers date back thousands of

years. An example of such a “classic” cipher is a substitution cipher, where each letter of the alphabet is

replaced by a different letter, for example A 7→ D, B 7→ E, and so on. Substitution ciphers have the property
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that changing one letter of the plaintext always changes exactly one letter of the ciphertext. This is not a

desirable property, because it makes the cipher easy to break. Therefore, modern ciphers are designed to

satisfy a property called diffusion: changing one letter of the plaintext should change many letters of the

ciphertext.

In a block cipher, the plaintext is first divided into blocks of equal size, and then each block is en-

crypted separately. The block size is the number of plaintext symbols in each block. If the length of the

plaintext is not divisible by the block size, we pad the final block with additional spaces. In the context

of a block cipher, the diffusion property means that changing one symbol of a plaintext block potentially

affects every symbol of the ciphertext block. The following is an example of a block cipher.

Definition 4.73: Hill cipher

The Hill cipher of block size n has as its key an invertible n× n-matrix A with scalars from Z29.

Each ciphertext block c1, . . . ,cn is computed from the corresponding plaintext block p1, . . . , pn by

matrix multiplication modulo Z29:




c1
...

cn


 = A




p1
...

pn


 .

The matrix A is called the encryption matrix of the cipher. It inverse A−1 is called the decryption

matrix.

Example 4.74: Hill cipher: encryption

Encrypt the message “Meet me tomorrow” using the Hill cipher with block size 3 and encryption

matrix

A =




2 4 1

3 1 5

1 3 2


 .

Solution. We start by converting the message “Meet me tomorrow” to a sequence of scalars. We have

M= 13, E= 5, and so on. The encoded plaintext is 13,5,5,20,0,13,5,0,20,15,13,15,18,18,15,23. Next,

we divide the plaintext into blocks of length 3. Since the length of the plaintext is not a multiple of three,

we pad the final block with spaces, i.e., with zeros.

Plaintext blocks: (13,5,5), (20,0,13), (5,0,20), (15,13,15), (18,18,15), (23,0,0).

To compute the ciphertext, we regard each plaintext block as a 3-dimensional column vector and multiply

by the encryption matrix A. All calculations are done modulo 29. For example, for the first block, we have

A




13

5

5


 =




2 4 1

3 1 5

1 3 2






13

5

5


 =




22

11

9


 ,
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so the first ciphertext block is (22,11,9). We repeat the same with the remaining plaintext blocks.

A




20

0

13


=




24

9

17


 , A




5

0

20


=




1

28

16


 , A




15

13

15


=




10

17

26


 ,

A




18

18

15


=




7

2

15


 , A




23

0

0


=




17

11

23


 .

Therefore, we have found the following ciphertext blocks:

Ciphertext blocks: (22,11,9), (24,9,17), (1,28,16), (10,17,26), (7,2,15), (17,11,23).

Finally, we can convert the ciphertext to a list of symbols: “VKIXIQA.PJQZGBOQKW”. ♠

Example 4.75: Hill cipher: decryption

Decrypt the message “RNOLFPHHCIGH DE” using the Hill cipher with block size 3 and encryption

matrix

A =




2 4 1

3 1 5

1 3 2


 .

Solution. The process is analogous to encryption, except that we need to use the decryption matrix A−1

instead of A. We first calculate A−1, keeping in mind that scalars are from the field Z29. The method is the

same as in Example 4.71; we skip the individual steps in the interest of brevity.

[A | I] =




2 4 1 1 0 0

3 1 5 0 1 0

1 3 2 0 0 1


 ≃ . . . ≃




1 0 0 23 20 11

0 1 0 4 17 28

0 0 1 26 8 11


 =

[
I | A−1

]
.

Next, we convert the 15 ciphertext symbols “RNOLFPHHCIGH DE” to scalars and divide them into blocks

of length 3:

Ciphertext blocks: (18,14,15), (12,6,16), (8,8,3), (9,7,8), (0,4,5).

Now we decrypt each ciphertext block by a matrix multiplication with A−1.

A−1




18

14

15


=




18

5

20


 , A−1




12

6

16


=




21

18

14


 , A−1




8

8

3


=




0

20

15


 ,

A−1




9

7

8


=




0

2

1


 , A−1




0

4

5


=




19

5

0


 .

This yields the following plaintext blocks:

Plaintext blocks: (18,5,20), (21,18,14), (0,20,15), (0,2,1), (19,5,0).
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Converting these back to letters, and omitting the trailing space, we find that the plaintext is “return to

base”. ♠

It is important to note that, despite its good diffusion properties, the Hill cipher is not secure. The cipher

has many weaknesses. For one, because A0= 0, a block of spaces in the plaintext will always be encrypted

as a block of spaces in the ciphertext, regardless of the encryption matrix A. More importantly, the cipher

is subject to a so-called known plaintext attack. If an eavesdropper intercepts some ciphertext for which

a small amount of the corresponding plaintext happens to be known, it is immediately possible to recover

the key and therefore decrypt the rest of the ciphertext. Carrying out this attack only requires some basic

knowledge of linear algebra. The following example illustrates how this is done.

Example 4.76: Cryptanalysis of the Hill cipher: known plaintext attack

Eve intercepts the following encrypted message sent by Alice:

“EFNOR.AHIFNEPL.TSZS,RSKT.ZBBRFVUPFVZLFHNTV”.

Eve knows that Alice uses a Hill cipher with block length 3, but she does not know the secret

encryption matrix. Eve also knows that Alice begins all of her correspondence with “My dear

love”. Decrypt the message.

Solution. The first three blocks of the ciphertext are “EFNOR.AHI”, i.e.,

Ciphertext blocks: (5,6,14), (15,18,28), (1,8,9).

Eve also knows that the first three blocks of the plaintext are “MY DEAR L”, i.e.,

Plaintext blocks: (13,25,0), (4,5,1), (18,0,12).

These facts allow Eve to deduce the following information about the unknown decryption matrix A−1:

A−1




5

6

14


=




13

25

0


 , A−1




15

18

28


=




4

5

1


 , A−1




1

8

9


=




18

0

12


 .

Since Eve remembers the column method of matrix multiplication, she knows that these three equations

can be written as a single equation in matrix form:

A−1




5 15 1

6 18 8

14 28 9


=




13 4 18

25 5 0

0 1 12


 .

Note that this equation is of the form A−1C = P. (Here, C stands for “ciphertext” and P for “plaintext”).

Multiplying both sides of the equation by C−1 on the right, we get A−1 = PC−1. Thus, assuming that C is

invertible, Eve can easily compute the decryption matrix A−1. Eve computes:

C−1 =




5 15 1

6 18 8

14 28 9



−1

=




19 8 23

0 5 2

22 1 0


 .
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This allows Eve to compute the decryption matrix:

A−1 = PC−1 =




13 4 18

25 5 0

0 1 12






19 8 23

0 5 2

22 1 0


=




5 26 17

11 22 5

3 17 2


 .

Armed with the decryption matrix A−1, Eve can now decrypt Alice’s entire message, using the same

method as in Example 4.75. The plaintext is “My dear love, run away with me at midnight”. ♠

As the example shows, the Hill cipher is not secure at all. The main problem is that the cipher is linear, i.e.,

each component of a ciphertext block is a simple linear combination of the components of the plaintext

block. This linearity property enables Eve to break the cipher by solving a system of linear equations.

For this reason, all modern block ciphers have a non-linear component. Often this takes the form of

so-called S-boxes. An S-box is an operation that scrambles the symbols of the alphabet in a non-linear

way. For example, consider the following S-box, which is an operation from Z29 to Z29:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

S(x) 17 9 27 2 20 12 21 26 16 18 4 24 23 7 19 14 28 29 1 15 10 22 6 5 25 11 13 3 8

The inputs of the S-box are shown in the top row, and the corresponding outputs in the bottom row. For

example, this S-box maps the input 7 to the output 26. We write S(7) = 26.

Definition 4.77: A toy block cipher

Consider the following block cipher on the alphabet Z29 with block size 3. The key consists of

12 elements k1, . . . ,k12 of Z29. To encrypt a plaintext block, regard the block as a 3-dimensional

column vector. Then repeat the following steps 3 times. All operations are carried out modulo 29.

• Key mixing: add the next three components of the key to the components of the vector.

• Diffusion: multiply the vector by the fixed 3×3-matrix A =




1 2 3

3 1 2

2 3 1


.

• S-box application: apply the S-box to each component of the vector.

Finally, apply one more key mixing step at the end. The resulting vector is the ciphertext block.

The cipher can be visualized as follows:

plaintext ciphertext

k1

k2

k3

A

S

S

S

k4

k5

k6

A

S

S

S

k7

k8

k9

A

S

S

S

k10

k11

k12

Note that the three basic steps (key mixing, diffusion, and S-box application) are repeated several times;

each such repetition is called a round of the block cipher. The more rounds a block cipher has, the better
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its diffusion and non-linearity properties. The final round is short: it only consists of a key mixing step,

with no final diffusion or S-box application. The reason is that performing a final diffusion and S-box

application would not add anything to the security of the cipher. An attacker could simply undo these last

two steps, since they do not depend on the key.

The matrix A is called the diffusion matrix of the cipher. Note that, unlike for the Hill cipher, the

matrix A is fixed once and for all and is not part of the key. Instead, the key consists of scalars that are

added to the current block at the beginning of each round.

Example 4.78: Toy block cipher: encryption

Encrypt the message “I like math” using the block cipher of Definition 4.77 and the key

1,1,3,3,5,5,7,7,9,9,11,11.

Solution. We first represent the plaintext as a sequence of blocks, padding the final block with zeros:

Plaintext blocks: (9,0,12), (9,11,5), (0,13,1), (20,8,0).

To encrypt the first block, we start with the vector [9,0,12]T and apply the following steps:

Round 1:

• Key mixing: the first three components of the key are 1,1,3. We add them to the plaintext.




9

0

12


+




1

1

3


 =




10

1

15


 .

• Diffusion: multiply by the matrix A.




1 2 3

3 1 2

2 3 1






10

1

15


 =




28

3

9


 .

• S-box application: apply the S-box to each component of the vector.




S(28)
S(3)
S(9)


 =




8

2

18


 .

Round 2:

• Key mixing: the next three components of the key are 3,5,5.




8

2

18


+




3

5

5


 =




11

7

23


 .
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• Diffusion: 


1 2 3

3 1 2

2 3 1






11

7

23


 =




7

28

8


 .

• S-box application: 


S(7)
S(28)
S(8)


 =




26

8

16


 .

Round 3:

• Key mixing: the next three components of the key are 7,7,9.




26

8

16


+




7

7

9


 =




4

15

25


 .

• Diffusion: 


1 2 3

3 1 2

2 3 1






4

15

25


 =




22

19

20


 .

• S-box application: 


S(22)
S(19)
S(20)


 =




6

15

10


 .

Round 4 (the final round is abbreviated):

• Key mixing: the next three components of the key are 9,11,11.




6

15

10


+




9

11

11


 =




15

26

21


 .

Therefore, the first ciphertext block is (15,26,21). We repeat the same procedure with the remaining

plaintext blocks, and obtain the following ciphertext blocks:

Ciphertext blocks: (15,26,21), (7,24,1), (2,16,23), (7,20,22).

The corresponding ciphertext is “OZUGXABPWGTV”. ♠

Are ciphers like this actually used in the real world? The answer is yes. While the cipher of Definition 4.77

is greatly simplified, it has the same basic structure as modern real-world block ciphers (such as AES, the

Advanced Encryption Standard). Naturally, these real-world ciphers differ in some details, such as the

alphabet size, the block size, the number of rounds, the design of the S-boxes, the way the key is computed,

and the precise order in which the operations are applied. However, their basic structure is very similar to
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our toy cipher, and indeed, all such ciphers rely on key mixing, diffusion, and non-linear S-boxes as their

key components.

For example, AES uses an alphabet size of 256 instead of 29 (i.e., it operates on bytes, rather than

elements of Z29). Although Z256 is not a field (because 256 is not prime), it nevertheless turns out that

there exists a field with 256 elements, and AES uses it for its algebraic operations. Our toy cipher’s

block size of 3 is much too small to achieve effective diffusion; modern real-world ciphers use block sizes

between 16 and 32 bytes (128 to 256 bits). The design of the S-boxes is a bit of a black art; at minimum,

they must be designed to withstand two common types of cryptanalysis known as linear cryptanalysis

and differential cryptanalysis. Among other things, this means that the S-box should be “as far from

linear” as possible.

A detailed discussion of the design and cryptanalysis of modern block ciphers is far beyond the scope

of this book, but we hope that you have gotten a taste of this fascinating subject, and the role that linear

algebra over finite fields plays in it.

Exercises

Exercise 4.9.1 Encrypt the message “Rendezvous at dawn” using the Hill cipher with block size 3 and

encryption matrix

A =




2 1 1

1 3 1

1 1 4


 .

Exercise 4.9.2 Decrypt the message “ERM DXYBJUWW.JWQLD,HL” using the Hill cipher with block size 3

and encryption matrix

A =




2 1 1

1 3 1

1 1 4


 .

Exercise 4.9.3 Eve intercepts the following encrypted message sent by Bob:

“TGVXKHGSW,JU,JHYJSCDSBQIRPEV”

Eve knows that Alice uses a Hill cipher with block length 2, but she does not know the secret encryption

matrix. Eve also knows that Bob begins all of his letters with “Hello”. Decrypt the message.

Exercise 4.9.4 Encrypt the message “Lost contact” using the block cipher of Definition 4.77 and the key

2,3,4,1,1,1,5,5,5,4,3,2.

Exercise 4.9.5 Decrypt the message “NRQEUAPOM GLFN”, using the block cipher of Definition 4.77 and

the key 1,1,1,2,2,2,3,3,3,4,4,4. Hint: To decrypt, we must perform all the encryption steps in reverse.

To undo a key mixing step, we subtract the relevant key components. To undo an S-box application, we

apply the S-box in reverse. To undo a diffusion step, multiply by the inverse of the diffusion matrix.



5. Spans, linear independence, and bases in Rn

5.1 Spans

Outcomes

A. Determine the span of a set of vectors.

B. Determine if a vector is contained in a specified span.

Let u and v be two non-parallel vectors in Rn. We can picture the set of their linear combinations as

follows:

u

v

−1u−1v

−1u+0v

−1u+1v

−1u+2v

−1u+3v

0u+3v

1u+3v

1u+3v
3u+3v

3u+2v

3u+1v

3u+0v

3u−1v

2u−1v

1u−1v

0u−1v

0

As the picture shows, the linear combinations of u and v form a 2-dimensional plane through the origin.

We say that this plane is spanned by the vectors u and v. This concept generalizes to more than two

vectors. For example, three vectors may span a 3-dimensional space (although sometimes, they span only

a 2-dimensional space, or even a line). This motivates the following definition.

175
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Definition 5.1: Span of a set of vectors

The set of all linear combinations of the vectors u1, . . . ,uk in Rn is known as the span of these

vectors and is written as span{u1, . . . ,uk}. Using set notation, we can write

span{u1, . . . ,uk} = {a1u1 + . . .+akuk | a1, . . . ,ak ∈ R} .

Example 5.2: Vectors in a span

Let u =




1

1

1


 and v =




3

2

1


. Which of the following vectors are elements of span{u,v}?

(a) w =




2

3

4


 , (b) z =




1

1

2


 .

Solution. (a) For a vector to be in span{u,v}, it must be a linear combination of u and v. Therefore,

w ∈ span{u,v} if and only if we can find find scalars a,b such that au+bv = w. We must therefore solve

the equation

a




1

1

1


+b




3

2

1


=




2

3

4


 .

We write this as an augmented matrix and solve.




1 3 2

1 2 3

1 1 4


≃ . . .≃




1 0 5

0 1 −1

0 0 0


 .

The solution is a = 5 and b = −1. This means that w = 5u+ (−1)v. Therefore, w is an element of

span{u,v}.
(b) We repeat the same method with the vector z. This time, we have to find a,b such that au+bv = z.

The system of equations is 


1 3 1

1 2 1

1 1 2


≃ . . .≃




1 3 1

0 −1 0

0 0 1


 ,

which is inconsistent. Therefore, there is no solution. We conclude that z is not an element of span{u,v}.
♠

Example 5.3: Describing the span

Describe the span of the vectors u =




1

1

1


 and v =




3

2

1


 in R3.
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Solution. Let w = [x,y,z]T be any vector. Proceeding as in the previous example, we know that w is an

element of span{u,v} if and only if the equation

a




1

1

1


+b




3

2

1


=




x

y

z




is consistent. Note that the variables of this equation are a,b; we regard x,y,z as constants for the moment.

We write the augmented matrix of this system and reduce to echelon form:




1 3 x

1 2 y

1 1 z




R2←R2−R1

R2←R3−R1≃




1 3 x

0 −1 y− x

0 −2 z− x


 R3←R3−2R2≃




1 3 x

0 −1 y− x

0 0 (z− x)−2(y− x)


 ,

From the echelon form, we see that the system is consistent if and only if (z− x)− 2(y− x) = 0, or

equivalently x−2y+ z = 0. Therefore, the vector w is in span{u,v} if and only if x−2y+ z = 0. In other

words, the span of u and v is the plane x−2y+ z = 0. ♠

Example 5.4: Span of redundant vectors

Let u =




1

1

1


, v =




3

2

1


, and w =




11

8

5


. Show that span{u,v,w}= span{u,v}.

Solution. Observe that w = 2u+3v. Therefore, w is already in the span of u and v. Two sets are equal if

they have the same elements, i.e., each element of the first set is an element of the second set and vice versa.

Therefore, to show span{u,v,w} = span{u,v}, we must show (a) that every element of span{u,v,w} is

an element of span{u,v} and (b) vice versa.

(a) Let z be an arbitrary element of span{u,v,w}. Then, by definition of span, there exist scalars a,b,c

such that

z = au+bv+ cw.

But as observed above, we have w = 2u+3v, and therefore we can also write

z = au+bv+ c(2u+3v)

= (a+2c)u+(b+3c)v.

It follows that z is a linear combination of u and v, and therefore, z ∈ span{u,v}.
(b) Clearly every linear combination of u and v is also a linear combination of u, v, and w, namely,

taking the coefficient of w to be 0. Therefore, every element of span{u,v} is an element of span{u,v,w}.
Because we have shown that every element of span{u,v,w} is an element of span{u,v} and vice

versa, it follows that span{u,v,w} and span{u,v} are the same set of vectors. ♠

In the situation of the last example, we say that the vector w is redundant; it does not contribute anything

to span{u,v,w}. Geometrically, the three vectors u, v, and w lie in a plane. Since the two vectors u and v
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are sufficient to span this plane, the third vector w is not really needed. We will study this situation more

systematically in the next section.

Example 5.5: Span of the empty set

We talked about the span of k vectors u1, . . . ,uk. What if k = 0? What is the span of an empty set

of vectors?

Solution. Consider what happens when we compute the sum of three numbers. We usually write this as

b1 +b2 +b3. We can also compute the sum of three numbers by starting from 0 and then adding each of

the three numbers to it. I.e., the sum can be computed as 0+ b1 + b2 + b3. Similarly, we can write the

sum of two numbers as 0+b1 +b2, and the sum of just one number as 0+b1. Continuing the pattern, it

follows that the sum of zero numbers should be 0:

Sum of 3 numbers: 0+b1 +b2 +b3.

Sum of 2 numbers: 0+b1 +b2.

Sum of 1 numbers: 0+b1.

Sum of 0 numbers: 0.

The sum of zero numbers is also called the empty sum. It is equal to the unit of addition, i.e., 0. By an

analogous argument, the empty sum of vectors is equal to the unit of vector addition, i.e., to the zero vector

0. In general, if we have k vectors u1, . . . ,uk, the span consists of all vectors of the form a1u1+ . . .+akuk,

which is a sum of k vectors. In case k = 0, the span consists only of the empty sum, i.e., the zero vector 0,

which we also call the empty linear combination. Therefore, the span of the empty set of vectors is {0}.
♠

Exercises

Exercise 5.1.1 Consider the vectors

u1 =




1

1

−2


 , u2 =




1

2

−2


 , u3 =




1

−3

−2


 , u4 =



−1

1

2


 .

Which of the following vectors are in span{u1, . . . ,u4}? For each vector that is in the span, exhibit a linear

combination of u1, . . . ,u4 that equals this vector.

(a) x =




1

2

−1


 , (b) y =




2

−3

−4


 , (c) z =




1

5

−2


 .

Exercise 5.1.2 Describe the span of the vectors u =




1

0

2


 and v =




2

−1

1


 in R3.
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Exercise 5.1.3 Describe the span of the following vectors in R4:

u1 =




1

1

−1

−1


 , u2 =




5

1

1

0


 , u3 =




0

−2

2

1


 , u4 =




3

1

1

1


 .

Exercise 5.1.4 Let u =




2

1

0


, v =




1

3

5


, and w =




1

0

−1


. Show that span{u,v,w}= span{u,v}.

Exercise 5.1.5 Suppose {u1, . . . ,uk} is a set of vectors from Rn. Show that 0 ∈ span{u1, . . . ,uk}.

Exercise 5.1.6 In this exercise, we use scalars from the field Z5 of integers modulo 5 instead of real

numbers (see Section 1.8, “Fields”). Consider the vectors

u1 =




1

4

3


 , u2 =




0

2

3


 , u3 =




2

1

3


 , u4 =




3

1

0


 .

Which of the following vectors are in span{u1, . . . ,u4}? For each vector that is in the span, exhibit a linear

combination of u1, . . . ,u4 that equals this vector.

(a) x =




0

1

4


 , (b) y =




1

1

2


 , (c) z =




2

0

4


 .

5.2 Linear independence

Outcomes

A. Find the redundant vectors in a set of vectors.

B. Determine whether a set of vectors is linearly independent.

C. Find a linearly independent subset of a set of spanning vectors.

D. Write a vector as a unique linear combination of a set of linearly independent vectors.

5.2.1. Redundant vectors and linear independence

In Example 5.4, we encountered three vectors u, v, and w such that span{u,v,w} = span{u,v}. If this

happens, then the vector w does not contribute anything to the span of {u,v,w}, and we say that w is

redundant. The following definition generalizes this notion.
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Definition 5.6: Redundant vectors, linear dependence, and linear independence

Consider a sequence of k vectors u1, . . . ,uk. We say that the vector u j is redundant if it can be

written as a linear combination of earlier vectors in the sequence, i.e., if

u j = a1 u1 +a2 u2 + . . .+a j−1 u j−1

for some scalars a1, . . . ,a j−1. We say that the sequence of vectors u1, . . . ,uk is linearly depen-

dent if it contains one or more redundant vectors. Otherwise, we say that the vectors are linearly

independent.

Example 5.7: Redundant vectors

Find the redundant vectors in the following sequence of vectors. Are the vectors linearly indepen-

dent?

u1 =




0

0

0

0


 , u2 =




1

2

2

3


 , u3 =




1

1

1

1


 , u4 =




2

3

3

4


 , u5 =




0

1

2

3


 , u6 =




3

3

2

2


 .

Solution.

• The vector u1 is redundant, because it is a linear combination of earlier vectors. (Although there are

no earlier vectors, recall from Example 5.5 that the empty sum of vectors is equal to the zero vector

0. Therefore, u1 is indeed an (empty) linear combination of earlier vectors.)

• The vector u2 is not redundant, because it cannot be written as a linear combination of u1. This is

because the system of equations 


0 1

0 2

0 2

0 3




has no solution.

• The vector u3 is not redundant, because it cannot be written as a linear combination of u1 and u2.

This is because the system of equations




0 1 1

0 2 1

0 2 1

0 3 1




has no solution.

• The vector u4 is redundant, because u4 = u2 +u3.
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• The vector u5 is not redundant, because This is because the system of equations




0 1 1 2 0

0 2 1 3 1

0 2 1 3 2

0 3 1 4 3




has no solution.

• The vector u6 is redundant, because u6 = u2 +2u3−u5.

In summary, the vectors u1, u4, and u6 are redundant, and the vectors u2, u3, and u5 are not. It follows

that the vectors u1, . . . ,u6 are linearly dependent. ♠

5.2.2. The casting-out algorithm

The last example shows that it can be a lot of work to find the redundant vectors in a sequence of k vectors.

Doing so in the naive way require us to solve up to k systems of linear equations! Fortunately, there is a

much faster and easier method, the so-called casting-out algorithm.

Algorithm 5.8: Casting-out algorithm

Input: a list of k vectors u1, . . . ,uk ∈ Rn.

Output: the set of indices j such that u j is redundant.

Algorithm: Write the vectors u1, . . . ,uk as the columns of an n× k-matrix, and reduce to echelon

form. Every non-pivot column, if any, corresponds to a redundant vector.

Example 5.9: Casting-out algorithm

Use the casting-out algorithm to find the redundant vectors among the vectors from Example 5.7.

Solution. Following the casting-out algorithm, we write the vectors u1, . . . ,u6 as the columns of a matrix

and reduce to echelon form.



0 1 1 2 0 3

0 2 1 3 1 3

0 2 1 3 2 2

0 3 1 4 3 2


≃ . . .≃




0 1 1 2 0 3

0 0 1 1 −1 3

0 0 0 0 1 −1

0 0 0 0 0 0


 .

The pivot columns are columns 2, 3, and 5. The non-pivot columns are columns 1, 4, and 6. Therefore,

the vectors u1, u4, and u6 are redundant. Note that this is the same answer we got in Example 5.7. ♠

The above version of the casting-out algorithm only tells us which of the vectors (if any) are redundant,

but it does not give us a specific way to write the redundant vectors as linear combinations of previous

vectors. However, we can easily get this additional information if we reduce the matrix all the way to

reduced echelon form. We call this version of the algorithm the extended casting-out algorithm.
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Algorithm 5.10: Extended casting-out algorithm

Input: a list of k vectors u1, . . . ,uk ∈ Rn.

Output: the set of indices j such that u j is redundant, and a set of coefficients for writing each

redundant vector as a linear combination of previous vectors.

Algorithm: Write the vectors u1, . . . ,uk as the columns of an n× k-matrix, and reduce to reduced

echelon form. Every non-pivot column, if any, corresponds to a redundant vector. If u j is a re-

dundant vector, then the entries in the j th column of the reduced echelon form are coefficients for

writing u j as a linear combination of previous non-redundant vectors.

Example 5.11: Extended casting-out algorithm

Use the casting-out algorithm to find the redundant vectors among the vectors from Example 5.7,

and write each redundant vector as a linear combination of previous non-redundant vectors.

Solution. Once again, we write the vectors u1, . . . ,u6 as the columns of a matrix. This time we use the

extended casting-out algorithm, which means we reduce the matrix to reduced echelon form instead of

echelon form. 


0 1 1 2 0 3

0 2 1 3 1 3

0 2 1 3 2 2

0 3 1 4 3 2


≃ . . .≃




0 1 0 1 0 1

0 0 1 1 0 2

0 0 0 0 1 −1

0 0 0 0 0 0


 .

As before, the non-pivot columns are columns 1, 4, and 6, and therefore, the vectors u1, u4, and u6 are

redundant. The non-redundant vectors are u2, u3, and u5. Moreover, the entries in the sixth column are 1,

2, and −1. Note that this means that the sixth column can be written as 1 times the second column plus 2

times the third column plus (−1) times the fourth column. The same coefficients can be used to write u6

as a linear combination of previous non-redundant columns, namely:

u6 = 1u2 +2u3−1u5.

Also, the entries in the fourth column are 1 and 1, which are the coefficients for writing u4 as a linear

combination of previous non-redundant columns, namely:

u4 = 1u2 +1u3.

Finally, there are no non-zero entries in the first column. This means that u1 is the empty linear combina-

tion

u1 = 0.

♠

5.2.3. Alternative characterization of linear independence

Our definition of redundant vectors depends on the order in which the vectors are written. This is because

each redundant vector must be a linear combination of earlier vectors in the sequence. For example, in
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the sequence of vectors

u =




1

1

1


 , v =




3

2

1


 , w =




11

8

5


 ,

the vector w is redundant, because it is a linear combination of earlier vectors w = 2u+3v. Neither u nor

v are redundant. On the other hand, in the sequence of vectors

u =




1

1

1


 , w =




11

8

5


 , v =




3

2

1


 ,

v is redundant because v = 1
3w− 2

3u, but neither u nor w are redundant. Note that none of the vectors have

changed; only the order in which they are written is different. Yet w is the redundant vector in the first

sequence, and v is the redundant vector in the second sequence.

Because we defined linear independence in terms of the absence of redundant vectors, you may sus-

pect that the concept of linear independence also depends on the order in which the vectors are written.

However, this is not the case. The following theorem gives an alternative characterization of linear inde-

pendence that is more symmetric (it does not depend on the order of the vectors).

Theorem 5.12: Characterization of linear independence

Let u1, . . . ,uk be vectors. Then u1, . . . ,uk are linearly independent if and only if the homogeneous

equation

a1 u1 + . . .+ak uk = 0

has only the trivial solution.

Proof. Let A be the n×k-matrix whose columns are u1, . . . ,uk. We know from the theory of homogeneous

systems that the system a1 u1 + . . .+ak uk = 0 has no non-trivial solution if and only if every column of

the echelon form of A is a pivot column. By the casting-out algorithm, this is the case if and only if none

of the vectors u1, . . . ,uk are redundant, i.e., if and only if the vectors are linearly independent. ♠

Example 5.13: Characterization of linear independence

Use the method of Theorem 5.12 to determine whether the following vectors are linearly indepen-

dent in R4.

u1 =




1

1

2

0


 , u2 =




0

1

1

1


 , u3 =




1

2

3

2


 , u4 =




2

3

7

1


 .

Solution. We must check whether the equation

a1




1

1

2

0


+a2




0

1

1

1


+a3




1

2

3

2


+a4




2

3

7

1


=




0

0

0

0



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has a non-trivial solution. If it does, the vectors are linearly dependent. On the other hand, if there is only

the trivial solution, the vectors are linearly independent. We write the augmented matrix and solve:




1 0 1 2 0

1 1 2 3 0

2 1 3 7 0

0 1 2 1 0


≃ . . .≃




1 0 1 2 0

0 1 1 1 0

0 0 1 0 0

0 0 0 2 0


 .

Since every column is a pivot column, there are no free variables; the system of equations has a unique

solution, which is a1 = a2 = a3 = a4 = 0, i.e., the trivial solution. Therefore, the vectors u1, . . . ,u4 are

linearly independent. ♠

Example 5.14: Characterization of linear independence

Use the method of Theorem 5.12 to determine whether the following vectors are linearly indepen-

dent in R3.

u1 =




1

1

0


 , u2 =




1

3

1


 , u3 =




0

4

2


 ,

Solution. As in the previous example, we must check whether the equation a1 u1+a2 u2+a3 u3 = 0 has a

non-trivial solution. Once again, we write the augmented matrix and solve:



1 1 0 0

1 3 4 0

0 1 2 0


≃ . . .≃




1 1 0 0

0 2 4 0

0 0 0 0


 .

Since column 3 is not a pivot column, a3 is a free variable. Therefore, the system has a non-trivial solution,

and the vectors are linearly dependent.

With a small amount of extra work, we can find an actual non-trivial solution of a1 u1+a2 u2+a3 u3 =
0. All we have to do is set a3 = 1 and do a back substitution. We find that (a1,a2,a3) = (2,−2,1) is a

solution. In other words,

2u1−2u2 +u3 = 0.

We can also use this information to write u3 as a linear combination of previous vectors, namely, u3 =
−2u1 +2u2. ♠

The characterization of linear independence in Theorem 5.12 is mostly useful for theoretical reasons.

However, it can also help in solving problems such as the following.

Example 5.15: Related sets of vectors

Let u,v,w be linearly independent vectors in Rn. Are the vectors u+v, 2u+w, and v−5w linearly

independent?

Solution. By Theorem 5.12, to check whether the vectors are linearly independent, we must check whether

the equation

a(u+v)+b(2u+w)+ c(v−5w) = 0 (5.1)
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has non-trivial solutions. If it does, the vectors are linearly dependent, if it does not, they are linearly

independent. We can simplify the equation as follows:

(a+2b)u+(a+ c)v+(b−5c)w = 0. (5.2)

Since u, v, and w are linearly independent, we know, again by Theorem 5.12, that equation (5.2) only has

the trivial solution. Therefore,

a+2b = 0,

a+ c = 0,

b−5c = 0.

We can solve this system of three equations in three variables, and we find that it has the unique solution

a= b = c= 0. Therefore, a = b= c = 0 is the only solution to equation (5.1), which means that the vectors

u+v, 2u+w, and v−5w are linearly independent. ♠

5.2.4. Properties of linear independence

The following are some properties of linearly independent sets.

Proposition 5.16: Properties of linear independence

1. Linear independence and reordering. If a sequence u1, . . . ,uk of k vectors is linearly inde-

pendent, then so is any reordering of the sequence (i.e., whether or not the vectors are linearly

independent does not depend on the order in which the vectors are written down).

2. Linear independence of a subset. If u1, . . . ,uk are linearly independent, then so are u1, . . . ,u j

for any j < k.

3. Linear independence and dimension. Let u1, . . . ,uk be a sequence of k vectors in Rn. If

k > n, then the vectors are linearly dependent (i.e., not linearly independent).

Proof.

1. This follows from Theorem 5.12, because whether or not the equation a1u1 + . . .+akuk = 0 has a

non-trivial solution does not depend on the order in which the vectors are written.

2. If one of the vectors in the sequence u1, . . . ,u j were redundant, then it would be redundant in the

longer sequence u1, . . . ,uk as well.

3. Let A be the n×k-matrix that has the vectors u1, . . . ,uk as its columns and suppose that k > n. Then

the rank of A is at most n, so the echelon form of A has some non-pivot columns. Therefore, the

system a1u1 + . . .+ akuk = 0 has non-trivial solutions, and the vectors are linearly dependent by

Theorem 5.12.

♠
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Example 5.17: Linear dependence

Are the following vectors linearly independent?

[
1

4

]
,

[
2

3

]
,

[
3

2

]
.

Solution. Since these are 3 vectors in R2, they are linearly dependent by Proposition 5.16. No calculation

is necessary. ♠

5.2.5. Linear independence and linear combinations

In general, there is more than one way of writing a given vector as a linear combination of some spanning

vectors. For example, consider

u1 =




1

1

0


 , u2 =




0

1

1


 , u3 =




1

2

1


 , v =




1

3

2


 .

We can write v in many different ways as a linear combination of u1, . . . ,u3, for example

v = −u1 +2u3,

v = u2 +u3,

v = u1 +2u2,

v = 2u1 +3u2−u3.

However, when the vectors u1, . . . ,uk are linearly independent, this does not happen. In this case, the linear

combination is always unique, as the following theorem shows.

Theorem 5.18: Unique linear combination

Assume u1, . . . ,uk are linearly independent. Then every vector v ∈ span{u1, . . . ,uk} can be written

as a linear combination of u1, . . . ,uk in a unique way.

Proof. We already know that every vector v ∈ span{u1, . . . ,uk} can be written as a linear combination of

u1, . . . ,uk, because that is the definition of span. So what must be proved is the uniqueness. Suppose,

therefore, that there are two ways of writing v as such a linear combination, i.e., that

v = a1 u1 +a2 u2 + . . .+ak uk and

v = b1 u1 +b2 u2 + . . .+bk uk.

Subtracting one equation from the other, we get

0 = (a1−b1)u1 +(a2−b2)u2 + . . .+(ak−bk)uk.

Since u1, . . . ,uk are linearly independent, we know by Theorem 5.12 that the last equation only has the

trivial solution, i.e., a1−b1 = 0, a2−b2 = 0, . . . , ak−bk = 0. It follows that a1 = b1, a2 = b2, . . . , ak = bk.
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We have shown that any two ways of writing v as a linear combination of u1, . . . ,uk are equal. Therefore,

there is only one way of doing so. ♠

5.2.6. Removing redundant vectors

Consider the span of some vectors u1, . . . ,uk. As we just saw in the previous subsection, the span is

especially nice when the vectors u1, . . . ,uk are linearly independent, because in that case, every element v

of the span can be uniquely written in the form v = a1 u1 + . . .+ak uk.

But what if we have a span of some vectors u1, . . . ,uk that are not linearly independent? It turns out

that we can always find some linearly independent vectors that span the same set. In fact, this can be done

by simply removing the redundant vectors from u1, . . . ,uk. This is the subject of the following theorem.

Theorem 5.19: Removing redundant vectors

Let u1, . . . ,uk be a sequence of vectors, and suppose that u j1 , . . . ,u jℓ is the subsequence of vectors

that is obtained by removing all of the redundant vectors. Then u j1 , . . . ,u jℓ are linearly independent

and

span
{

u j1 , . . . ,u jℓ

}
= span{u1, . . . ,uk} .

Proof. Remove the redundant vectors one by one, from right to left. Each time a redundant vector is

removed, the span does not change; the proof of this is similar to Example 5.4. Moreover, the resulting

sequence of vectors span
{

u j1 , . . . ,u jℓ

}
is linearly independent, because if any of these vectors were a

linear combination of earlier ones, then it would have been redundant in the original sequence of vectors,

and would have therefore been removed. ♠

Example 5.20: Finding a linearly independent set of spanning vectors

Find a subset of {u1, . . . ,u4} that is linearly independent and has the same span as {u1, . . . ,u4}.

u1 =




1

0

−2

3


 , u2 =




−2

0

4

−6


 , u3 =




1

2

2

1


 , u4 =




3

4

2

5


 .

Solution. We use the casting-out algorithm to find the redundant vectors:




1 −2 1 3

0 0 2 4

−2 4 2 2

3 −6 1 5


≃ . . .≃




1 −2 1 3

0 0 2 4

0 0 0 0

0 0 0 0


 .

Therefore, the redundant vectors are u2 and u4. We remove them (“cast them out”) and are left with u1 and

u3. Therefore, by Theorem 5.19, {u1,u3} is linearly independent and span{u1,u3} = span{u1, . . . ,u4}.
♠
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Exercises

Exercise 5.2.1 Which of the following vectors are redundant? If there are redundant vectors, write each

of them as a linear combination of previous vectors.

u1 =




1

0

1


 , u2 =




2

0

2


 , u3 =




1

2

1


 , u4 =




1

6

1


 .

Exercise 5.2.2 Which of the following vectors are redundant? If there are redundant vectors, write each

of them as a linear combination of previous vectors.

u1 =




−1

−2

2

3


 , u2 =




−3

−4

3

3


 , u3 =




0

−1

4

3


 , u4 =




0

2

−3

−6


 .

Exercise 5.2.3 Use the method of Theorem 5.12 to determine whether the following vectors are linearly

independent. If they are linearly dependent, find a non-trivial linear combination of the vectors that is

equal to 0.

u1 =




2

3

2


 , u2 =



−1

0

2


 , u3 =



−3

−4

−2


 , u4 =




5

6

2


 .

Exercise 5.2.4 Use the method of Theorem 5.12 to determine whether the following vectors are linearly

independent. If they are linearly dependent, find a non-trivial linear combination of the vectors that is

equal to 0.

u1 =




1

−1

0

1


 , u2 =




1

6

7

1


 , u3 =




3

5

8

3


 , u4 =




1

0

1

1


 .

Exercise 5.2.5 Are the following vectors linearly independent? If not, write one of them as a linear

combination of the others.

u =




1

3

1


 , v =




1

4

2


 , w =




1

1

−1


 .

Exercise 5.2.6 Find a linearly independent set of vectors that has the same span as the given vectors.

u1 =




2

0

3


 , u2 =




1

3

5


 , u3 =




3

3

8


 , u4 =




3

−3

1


 .
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Exercise 5.2.7 Find a linearly independent set of vectors that has the same span as the given vectors.

u1 =




1

3

3

1


 , u2 =




2

6

6

2


 , u3 =




1

0

−3

1


 , u4 =




1

2

1

1


 .

Exercise 5.2.8 Here are some vectors in R4.

u1 =




1

1

−1

1


 , u2 =




1

2

−1

1


 , u3 =




1

−2

−1

1


 , u4 =




1

2

0

1


 , u5 =




1

−1

−1

1


 .

Explain why these vectors cannot possibly be linearly independent. Then obtain a linearly independent

subset of these vectors that has the same span as these vectors.

Exercise 5.2.9 Here are some vectors in R4.

u1 =




1

−1

−1

1


 , u2 =




−3

3

3

−3


 , u3 =




1

0

−1

1


 , u4 =




2

−9

−2

2


 , u5 =




1

0

0

1


 .

Explain why these vectors cannot possibly be linearly independent. Then find a non-trivial linear combi-

nation of these vectors that equals 0.

Exercise 5.2.10 Here are some vectors.

u1 =




1

1

−2


 , u2 =




2

2

−4


 , u3 =




2

7

−4


 , u4 =




5

7

−10


 , u5 =




12

17

−24


 .

Describe the span of these vectors as the span of as few vectors as possible.

Exercise 5.2.11 Here are some vectors.

u1 =




1

2

−2


 , u2 =




1

3

−2


 , u3 =




1

−2

−2


 , u4 =



−1

0

2


 , u5 =




1

3

−1


 .

Describe the span of these vectors as the span of as few vectors as possible.

Exercise 5.2.12 In this exercise, we use scalars from the field Z3 of integers modulo 3 instead of real

numbers (see Section 1.8, “Fields”). Use the extended casting-out algorithm to determine which of the

following vectors are redundant. If there are redundant vectors, write each of them as a linear combination

of previous vectors.

u1 =




2

1

0


 , u2 =




1

1

2


 , u3 =




2

0

2


 , u4 =




0

1

1


 .
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Exercise 5.2.13 Let u,v,w be linearly independent vectors in Rn. Are the vectors u+ v, 2u+w, and

w−2v linearly independent?

Exercise 5.2.14 Let u,v,w be linearly independent vectors in Rn. Are the vectors u+v, u+w, and w+v

linearly independent?

Exercise 5.2.15 Suppose A is an m×n-matrix and {w1, . . . ,wk} is a linearly independent set of vectors

in Rm. Now suppose Azi = wi. Show {z1, . . . ,zk} is also linearly independent.

5.3 Subspaces of Rn

Outcomes

A. Determine whether a subset of Rn is a subspace.

B. Recognize that spans are subspaces of Rn.

C. Recognize that solution sets of homogeneous systems of equations are subspaces of Rn.

As we saw earlier, the span of 0 vectors in Rn is a point, namely the set {0}. The span of one non-zero

vector is a line through the origin, and the span of two linearly independent vectors is a plane through the

origin.

Span of 0 vectors: a point Span of one vector: a line Span of two vectors: a plane

We also call these sets, respectively, a 0-dimensional subspace, a 1-dimensional subspace, and a 2-

dimensional subspace of Rn. The purpose of this section is to generalize this concept of subspace to

arbitrary dimensions.

Definition 5.21: Subspace

A subset V of Rn is called a subspace of Rn if

1. V contains the zero vector of Rn, i.e., 0 ∈V ;

2. V is closed under addition, i.e., for all u,w ∈V , we have u+w ∈V ;

3. V is closed under scalar multiplication, i.e., for all u ∈V and scalars k, we have k u ∈V .
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Notice that the subset V = {0} is a subspace of Rn (called the zero subspace). Every line or plane through

the origin is a subspace. Moreover, the entire space Rn is a subspace of itself. A subspace that is not the

entire space Rn is referred to as a proper subspace of Rn.

Proposition 5.22: Spans are subspaces

Let u1, . . . ,uk be vectors in Rn. Then span{u1, . . . ,uk} is a subspace of Rn.

Proof. Let S = span{u1, . . . ,uk}. To verify that S is a subspace of Rn, we must check that the three

conditions of Definition 5.21 hold.

• We have 0 ∈ S because 0 = 0u1 + . . .+0uk.

• Suppose u,w ∈ S. By definition of span, there exist scalars a1, . . . ,ak and b1, . . . ,bk such that u =
a1 u1 + . . .+ak uk and w = b1 u1 + . . .+bk uk. Therefore,

u+w = (a1 +b1)u1 + . . .+(ak +bk)uk.

It follows that u+w ∈ S = span{u1, . . . ,uk}, so that S is closed under addition.

• Suppose u ∈ S and t is a scalar. Then by definition of span, there exists scalars a1, . . . ,ak such that

u = a1 u1 + . . .+ak uk. Then

t u = (ta1)u1 + . . .+(tak)uk,

and thus t u ∈ S. It follows that S is closed under scalar multiplication.

Since S = span{u1, . . . ,uk} satisfies all three conditions, it follows that it is a subspace of Rn. ♠

Example 5.23: A line in R3

In R3, let L be the line through the origin that is parallel to the vector

d =



−5

1

−4


 .

Show that L is a subspace of R3.

Solution. The line L is simply the span of the vector d, i.e., L = span{d}. Therefore, it is a subspace by

Proposition 5.22. ♠

Proposition 5.24: Solution space of a homogeneous system of equations

Consider a homogeneous system of equations Ax = 0, where A is an m×n-matrix. Then the set of

solutions,

V = {x ∈ Rn | Ax = 0} ,

is a subspace of Rn. It is called the solution space of the system.

Proof. To show that V is a subspace of Rn, we check the three conditions of Definition 5.21.



192 Spans, linear independence, and bases in Rn

• We have 0 ∈V because A0 = 0.

• To show that V is closed under addition, suppose u,w ∈ V . Then by definition of V , Au = 0 and

Aw = 0. Therefore,

A(u+w) = Au+Aw = 0+0 = 0.

It follows that u+w ∈V .

• To show that V is closed under scalar multiplication, suppose u ∈ V and t is a scalar. Then by

definition of V , we have Au = 0. It follows that

A(t u) = t(Au) = t 0 = 0.

Therefore, t u ∈V .

Since the solution space V = {x ∈ Rn | Ax = 0} satisfies all three conditions, it is a subspace of Rn. ♠

Example 5.25: A plane in R3

Show that the plane 2x+3y− z = 0 is a subspace of R3.

Solution. Since 2x+3y− z = 0 is a homogeneous equation, its solution space








x

y

z



∣∣∣∣∣∣

2x+3y− z = 0





is a subspace of R3 by Proposition 5.24. ♠

Example 5.26: Non-examples

Which of the following are subspaces of R3?

(a) The line 


x

y

z


=




1

2

3


+ t




1

0

1


 .

(b) The plane 2x+3y− z = 5.

(c) The set of vectors

W =








x

y

z



∣∣∣∣∣∣

x,y,z ≥ 0



 .

Solution. None of them are subspaces. Neither the line (a) nor the plane (b) contains the origin 0, so they

fail to satisfy the first condition of subspaces. The set of vectors in (c) contains 0. It is also closed under



5.3. Subspaces of Rn 193

addition. However, it fails to be closed under scalar multiplication. For example, let u = [1,1,1]T . Then

u ∈W , but (−1)u 6∈W . ♠

Exercises

Exercise 5.3.1 Which of the following sets are subspaces of R3? Explain.

(a) V1 =



u =




u1

u2

u3



∣∣∣∣∣∣
|u1| ≤ 4



.

(b) V2 =



u =




u1

u2

u3



∣∣∣∣∣∣

ui ≥ 0 for each i = 1,2,3



.

(c) V3 =



u =




u1

u2

u3



∣∣∣∣∣∣

u3 +u1 = 2u2



.

(d) V4 =



u =




u1

u2

u3



∣∣∣∣∣∣

u3 ≥ u1



.

(e) V5 =



u =




u1

u2

u3



∣∣∣∣∣∣

u3 = u1 = 0



.

Exercise 5.3.2 Let w ∈ R4 be a given fixed vector. Let

M =





u =




u1

u2

u3

u4


 ∈ R4

∣∣∣∣∣∣∣∣
w·u = 0





.

Is M a subspace of R4? Explain.

Exercise 5.3.3 Let w,v be given vectors in R4 and define

M =





u =




u1

u2

u3

u4


 ∈ R4

∣∣∣∣∣∣∣∣
w·u = 0 and v·u = 0





.

Is M a subspace of R4? Explain.

Exercise 5.3.4 In this exercise, we use scalars from the field Z2 of integers modulo 2 instead of real

numbers (see Section 1.8, “Fields”). Which of the following sets are subspaces of (Z2)
3?
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(a) V1 =








1

1

0


 ,




0

1

1


 ,




1

0

1


 ,




0

0

0





.

(b) V2 =








1

1

1


 ,




1

1

0


 ,




1

0

0


 ,




0

0

0





.

(c) V3 =








0

0

0





.

(d) V3 =








1

1

1


 ,




1

0

0


 ,




0

1

0


 ,




0

0

1





.

Exercise 5.3.5 Suppose V ,W are subspaces of Rn. Let V ∩W be the set of all vectors that are in both V

and W . Show that V ∩W is also a subspace.

Exercise 5.3.6 Let V be a subset of Rn. Show that V is a subspace if and only if it is non-empty and the

following condition holds: for all u,v ∈V and all scalars a,b ∈ R,

au+bv ∈V .

Exercise 5.3.7 Let u1, . . . ,uk be vectors in Rn, and let S = span{u1, . . . ,uk}. Show that S is the smallest

subspace of Rn that contains u1, . . . ,uk. Specifically, this means you have to show: if V is any other

subspace of Rn such that u1, . . . ,uk ∈V , then S⊆V .

5.4 Basis and dimension

Outcomes

A. Find a basis for a subspace of Rn.

B. Use the casting-out algorithm to find a basis for a subspace given as a span.

C. Use basic solutions to find a basis for a subspace given as the solution space of a homogeneous

system of equations.

D. Find the coordinates of a vector with respect to a basis.

E. Find the dimension of a subspace of Rn.

F. Extend a set of linearly independent vectors to a basis.

G. Shrink a spanning set to a basis by removing redundant vectors.

H. Determine whether k vectors form a basis of a k-dimensional space.
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5.4.1. Definition of basis

We saw in Proposition 5.22 that spans are subspaces of Rn. Interestingly, the converse is also true: every

subspace of Rn is the span of some finite set of vectors.

Theorem 5.27: Subspaces are spans

Let V be a subspace of Rn. Then there exist linearly independent vectors {u1, . . . ,uk} in V such that

V = span{u1, . . . ,uk} .

Proof. We proceed as follows.

0. If V = {0}, then V is the empty span, and we are done.

1. Otherwise, V contains some non-zero vector. Pick a non-zero vector u1 in V . If V = span{u1}, we

are done.

2. Otherwise, pick a vector u2 in V that is not in span{u1}. If V = span{u1,u2}, we are done.

3. Otherwise, pick a vector u3 in V that is not in span{u1,u2}. If V = span{u1,u2,u3}, we are done.

4. Otherwise, pick a vector u4 in V that is not in span{u1,u2,u4}, and so on.

Continue in this way. Note that after the j th step of this process, the vectors u1, . . . ,u j are linearly inde-

pendent. This is because, by construction, no vector is in the span of the previous vectors, and therefore

no vector is redundant. By Proposition 5.16(3), there can be at most n linearly independent vectors in Rn.

Therefore the process must stop after k steps for some k ≤ n. But then V = span{u1, . . . ,uk}, as desired.

♠

In summary, every subspace of Rn is spanned by a finite, linearly independent collection of vectors. Such

a collection of vectors is called a basis of the subspace.

Definition 5.28: Basis of a subspace

Let V be a subspace of Rn. Then {u1, . . . ,uk} is a basis for V if the following two conditions hold:

1. span{u1, . . . ,uk}=V , and

2. u1, . . . ,uk are linearly independent.

Note that the plural of basis is bases.
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5.4.2. Examples of bases

Proposition 5.29: Standard basis of Rn

Let ei be the vector in Rn whose i th component is 1 and all of whose other components are 0. In

other words, ei is the i th column of the identity matrix.

e1 =




1

0

0
...

0




, e2 =




0

1

0
...

0




, e3 =




0

0

1
...

0




, . . . , en =




0

0

0
...

1




.

Then {e1,e2, . . . ,en} is a basis for Rn. It is called the standard basis of Rn.

Proof. To see that it is a basis of Rn, first notice that the vectors e1,e2, . . . ,en span Rn. Indeed, every

vector v = [x1, . . . ,xn]
T ∈ Rn can be written as v = x1e1 + . . .+ xnen. Second, the vectors e1,e2, . . . ,en are

evidently linearly independent, because none of these vectors can be written as a linear combination of

previous vectors. Since the vectors span Rn and are linearly independent, they form a basis of Rn. ♠

Example 5.30: A non-standard basis of R3

Check that the vectors

u1 =




1

2

1


 , u2 =




0

1

0


 , and u3 =



−1

0

1




form a basis of R3.

Solution. We must check that the vectors u1,u2,u3 are linearly independent and span R3. To check linear

independence, we use the casting-out algorithm.



1 0 −1

2 1 0

1 0 1


 ≃




1 0 −1

0 1 2

0 0 2


 .

Since all columns are pivot columns, there are no redundant vectors, so u1,u2,u3 are linearly independent.

To check that they span all of R3, let w = [x,y,z]T be an arbitrary element of R3. We must show that w is

a linear combination of u1,u2,u3. This amounts to solving the system of equations

a1 u1 +a2 u2 +a3 u3 = w,

or in augmented matrix form,



1 0 −1 x

2 1 0 y

1 0 1 z


 ≃




1 0 −1 x

0 1 2 y−2x

0 0 2 z− x


 .
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The system is clearly consistent, so it has a solution, and therefore w is indeed a linear combination of

u1,u2,u3. Since w was an arbitrary vector of R3, it follows that u1,u2,u3 span R3. ♠

Generalizing the last example, we find that a set of n vectors forms a basis of Rn if and only if the matrix

having those vectors as its columns is invertible. This is the content of the following proposition.

Proposition 5.31: Invertible matrices and bases of Rn

Let A be an n×n-matrix. Then the columns of A form a basis of Rn if and only if A is invertible.

We turn to the question of finding bases for subspaces of Rn.

Example 5.32: Basis of a span

Let

u1 =




2

0

−2


 , u2 =



−1

0

1


 , u3 =




1

3

5


 , u4 =




3

5

7


 , u5 =



−1

1

3


 .

Find a basis of span{u1, . . . ,u5}.

Solution. Let S = span{u1, . . . ,u5}. By Theorem 5.19, we know that if we remove the redundant vectors

from {u1, . . . ,u5}, then the remaining vectors will be linearly independent and will still span S. In other

words, the remaining vectors will be a basis for S. We use the casting-out algorithm to identity the

redundant vectors:




2 −1 1 3 −1

0 0 3 5 1

−2 1 5 7 3


 ≃




2 −1 1 3 −1

0 0 3 5 1

0 0 6 10 2


 ≃




2 −1 1 3 −1

0 0 3 5 1

0 0 0 0 0


 .

Since columns 2, 4, and 5 are the non-pivot columns, it follows that the vectors u2, u4, and u5 are redun-

dant. Therefore, the desired basis is {u1,u3}. ♠

Example 5.33: Basis of the solution space of a homogeneous system of equations

Find a basis for the solution space of the system of equations

x + y − z + 3w − 2v = 0,

x + y + z − 11w + 8v = 0,

4x + 4y − 3z + 5w − 3v = 0.

Solution. We solve the system of equations in the usual way:




1 1 −1 3 −2 0

1 1 1 −11 8 0

4 4 −3 5 −3 0


 ≃




1 1 −1 3 −2 0

0 0 2 −14 10 0

0 0 1 −7 5 0


 ≃




1 1 0 −4 3 0

0 0 1 −7 5 0

0 0 0 0 0 0


 .
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From the reduced echelon form, we see that y, w, and v are free variables. The general solution is:



x

y

z

w

v




= t




−3

0

−5

0

1




+ s




4

0

7

1

0




+ r




−1

1

0

0

0




.

Thus, the solution space is spanned by the vectors







−3

0

−5

0

1




,




4

0

7

1

0




,




−1

1

0

0

0








.

Moreover, these vectors are evidently linearly independent, because each vector contains a 1 in a position

where all the previous vectors have 0 (and therefore, none of the vectors can be written as a linear com-

bination of previous vectors). It follows that the above three vectors form a basis of the solution space.

♠

Note that the basis vectors of the solution space are exactly what we called the basic solutions in Sec-

tion 1.6.

5.4.3. Bases and coordinate systems

Let V be a subspace of Rn. A basis of V is essentially the same thing as a coordinate system for V .

To see why, let B = {u1, . . . ,uk} be some basis of V . This means that the vectors u1, . . . ,uk are linearly

independent and span V . Because the basis vectors are spanning, every vector v ∈ V can be written as a

linear combination of basis vectors

v = a1 u1 + . . .+ak uk.

Moreover, because the basis vectors are linearly independent, it follows by Theorem 5.18 that the coeffi-

cients a1, . . . ,ak are unique. We say that a1, . . . ,ak are the coordinates of v with respect to the basis B,

and we write

[v]B =




a1
...

ak


 .

u1

u2
u3

−2
−1

0
1

2

−2

−1

1

2

−1

1

Basis as coordinate system
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Example 5.34: Find a vector from its coordinates in a basis

Find the vector v that has coordinates

[v]B =




1

−1

2




with respect to the basis B = {u1,u2,u3} of R3, where

u1 =




1

2

1


 , u2 =




0

1

0


 , and u3 =



−1

0

1


 .

Solution. This simply means that v = 1u1−1u2 +2u3. We calculate

v = 1




1

2

1


−1




0

1

0


+2



−1

0

1


=



−1

1

3


 .

♠

In case the basis is the standard basis, the coordinates are just the usual ones, as the following example

illustrates:

Example 5.35: Find a vector from its coordinates in the standard basis

Find the vector v that has coordinates

[v]B =




1

−1

2


 ,

where B is the standard basis of R3.

Solution. The standard basis is

e1 =




1

0

0


 , e2 =




0

1

0


 , and e3 =




0

0

1


 .

We have to calculate

v = 1e1−1e2 +2e3 =




1

−1

2


 .

We see that the coordinates of any vector with respect to the standard basis are just the usual components

of the vector. ♠

We can also ask to find the coordinates of a given vector in a given basis.
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Example 5.36: Find the coordinates of a vector with respect to a basis

Find the coordinates of the vector

v =




1

2

3




with respect to the basis B = {u1,u2,u3} of R3, where

u1 =




1

2

1


 , u2 =




0

1

0


 , and u3 =



−1

0

1


 .

Solution. To find the coordinates, we must solve the system of equations v = a1 u1 + a2 u2 + a3 u3. We

solve: 


1 0 −1 1

2 1 0 2

1 0 1 3


 ≃




1 0 −1 1

0 1 2 0

0 0 2 2


 ≃




1 0 0 2

0 1 0 −2

0 0 1 1


 .

Therefore, the unique solution is (a1,a2,a3) = (2,−2,1). The coordinates of v with respect to the basis B

are

[v]B =




a1

a2

a3


=




2

−2

1


 .

♠

5.4.4. Dimension

One of the most important properties of bases is that any two bases for the same space must be of the same

size. To show this, we will need the the following fundamental result, called the Exchange Lemma. This

lemma states that spanning sets have at least as many vectors as linearly independent sets.

Lemma 5.37: Exchange Lemma

Suppose u1, . . . ,ur are linearly independent elements of span{v1, . . . ,vs}. Then r ≤ s.

Proof. Since each u j is an element of span{v1, . . . ,vs}, there exist scalars ai j such that

u j = a1 j v1 + . . .+as j vs.

Let A =
[
ai j

]
. Note that this matrix has s rows and r columns, i.e., it is an s× r-matrix. Now suppose,

for the sake of obtaining a contradiction, that r > s. Then by Theorem 1.35, the system Ax = 0 has a

non-trivial solution x, i.e., there exists x 6= 0 such that Ax = 0. In other words, for all i = 1, . . . ,s,

ai1x1 + . . .+airxr = 0.

Therefore,

x1 u1 + . . .+ xr ur = x1(a11 v1 + . . .+as1 vs)+ . . .+ xr(a1r v1 + . . .+asr vs)
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= (a11x1 + . . .+a1rxr)v1 + . . .+(as1x1 + . . .+asrxr)vs

= 0v1 + . . .+0vs

= 0.

This contradicts the assumption that u1, . . . ,ur are linearly independent. Since we assumed r > s and

obtained a contradiction, it follows that r ≤ s, as desired. ♠

Armed with the Exchange Lemma, we are now ready to show that any two bases of a space are of the

same size.

Theorem 5.38: Bases are of the same size

Let V be a subspace of Rn, and let B1 and B2 be bases of V . Suppose B1 contains s vectors and B2

contains r vectors. Then s = r.

Proof. This follows right away from the Exchange Lemma. Indeed, observe that B1 = {u1, . . . ,us} is a

spanning set for V while B2 = {v1, . . . ,vr} is linearly independent, so s≥ r. Similarly B2 = {v1, . . . ,vr} is

a spanning set for V while B1 = {u1, . . . ,us} is linearly independent, so r ≥ s. ♠

Because every basis of V has the same number of vectors, we give this number a special name. It is called

the dimension of V .

Definition 5.39: Dimension of a subspace

Let V be a subspace of Rn. Then the dimension of V , written dim(V ), is defined to be the number

of vectors in a basis.

Example 5.40: Dimension of Rn

What is the dimension of Rn?

Solution. The standard basis of Rn is {e1, . . . ,en}. Since it has n vectors, so dim(Rn) = n. ♠

Example 5.41: Dimension of a subspace

Let

V =








x

y

z


 ∈ R3

∣∣∣∣∣∣
x− y+2z = 0



 .

What is the dimension of V ?

Solution. We know that V is a subspace of R3, because it is the solution space of a system of a homoge-

neous system of equations (in this case, one equation in three variables). We can take y = t and z = s as

the free variables and solve for x = y−2z = t−2s. Therefore, a general element of V is of the form



x

y

z


 =




t−2s

t

s


 = t




1

1

0


+ s



−2

0

1


 .
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Thus,

V = span








1

1

0


 ,



−2

0

1





 .

Since the two spanning vectors are linearly independent, they form a basis of V , and thus dim(V ) = 2.

♠

Note that the dimension of the solution space of a system of equations is equal to the number of parameters

in the general solution, which is equal to the number of free variables. For this reason, the dimension is

also sometimes called the number of degrees of freedom.

Example 5.42: Dimension of a span

Let

W = span








1

2

−1

1


 ,




1

3

−1

1


 ,




8

19

−8

8


 ,




−6

−15

6

−6


 ,




1

3

0

1


 ,




1

5

0

1








.

What is the dimension of W?

Solution. Let

u1 =




1

2

−1

1


 , u2 =




1

3

−1

1


 , u3 =




8

19

−8

8


 , u4 =




−6

−15

6

−6


 , u5 =




1

3

0

1


 , u6 =




1

5

0

1


 ,

so that W = span{u1, . . . ,u6}. We use the casting-out algorithm to remove any redundant vectors from

u1, . . . ,u6. The remaining vectors will be linearly independent, and therefore a basis of the span.




1 1 8 −6 1 1

2 3 19 −15 3 5

−1 −1 −8 6 0 0

1 1 8 −6 1 1


 ≃




1 0 5 −3 0 −2

0 1 3 −3 0 2

0 0 0 0 1 1

0 0 0 0 0 0


 .

Therefore, the vectors u3, u4, and u6 are redundant, and {u1,u2,u5} is a basis of W . It follows that

dim(W ) = 3. ♠

5.4.5. More properties of bases and dimension

We begin by noting that every subspace V of Rn has a basis.

Theorem 5.43: Existence of bases

Every subspace of Rn has a basis.

Proof. This is just a restatement of Theorem 5.27. ♠
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Of course, the theorem does not mean that the basis is unique. Usually, a subspace of Rn will have many

different bases. The theorem just states that there exists at least one.

Sometimes, when we are looking for a basis of a space, we may already have a number of linearly

independent vectors. We would like to obtain a basis by adding some additional linearly independent

vectors to the ones we already have. The following lemma guarantees that this can always be done.

Lemma 5.44: Linearly independent set can be extended to a basis

Let V be a subspace of Rn, and let u1, . . . ,uℓ be linearly independent elements of V . Then it is

possible to extend {u1, . . . ,uℓ} to a basis of V . In other words, there exist zero or more vectors

w1, . . . ,ws such that

{u1, . . . ,uℓ,w1, . . . ,ws}
is a basis of V .

Proof. By Theorem 5.43, we know that V has some basis, say {v1, . . . ,vk}. However, this may not be the

basis we are looking for, because maybe it does not contain the vectors u1, . . . ,uℓ. Consider the sequence

of ℓ+ k vectors

u1, . . . ,uℓ,v1, . . . ,vk.

Since V is spanned by the vectors v1, . . . ,vk, it is certainly also spanned by the larger set of vectors

u1, . . . ,uℓ,v1, . . . ,vk. From Theorem 5.19, we know that we can obtain a basis of V by removing the re-

dundant vectors from u1, . . . ,uℓ,v1, . . . ,vk. On the other hand, u1, . . . ,uℓ are linearly independent, so none

of them can be redundant. It follows that the resulting basis of V contains all of the vectors u1, . . . ,uℓ. In

other words, we have found a basis of V that is an extension of u1, . . . ,uℓ, which is what had to be shown.

♠

Example 5.45: Extending a linearly independent set to a basis

Extend {u1,u2} to a basis of R4, where

u1 =




1

1

−1

2


 , u2 =




1

2

−2

4


 .

Solution. Let {e1, . . . ,e4} be the standard basis of R4. We obtain the desired basis by applying the casting-

out algorithm to u1,u2,e1,e2,e3,e4:




1 1 1 0 0 0

1 2 0 1 0 0

−1 −2 0 0 1 0

2 4 0 0 0 1


 ≃




1 1 1 0 0 0

0 1 −1 1 0 0

0 0 0 1 1 0

0 0 0 0 2 1


 .
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Therefore, we cast out the vectors e1 and e4 and keep the rest. The resulting basis is

{u1,u2,e2,e3}=








1

1

−1

2


 ,




1

2

−2

4


 ,




0

1

0

0


 ,




0

0

1

0








.

♠

Example 5.46: Extending a linearly independent set to a basis

Let

V =








x

y

z

w




∣∣∣∣∣∣∣∣
x+2y+ z−w = 0





.

Note that u1,u2 ∈V , where

u1 =




1

−1

1

0


 , u2 =




−2

1

1

1


 .

Extend {u1,u2} to a basis of V .

Solution. We first find a basis of V by solving the linear equation x+2y+ z−w = 0. Taking y = r, z = s,

and w = t as the free variables, we get x =−2y−z+w =−2r−s+ t, and therefore the general solution is




x

y

z

w


 =




−2r− s+ t

r

s

t


 = r




−2

1

0

0


+ s




−1

0

1

0


+ t




1

0

0

1


 .

Therefore, the vectors {v1,v2,v3} form a basis of V , where

v1 =




−2

1

0

0


 , v2 =




−1

0

1

0


 , v3 =




1

0

0

1


 .

However, this is not the basis we are looking for, because it does not extend {u1,u2}. To get a basis of V

that extends {u1,u2}, we perform the casting-out algorithm on the vectors u1,u2,v1,v2,v3:




1 −2 −2 −1 1

−1 1 1 0 0

1 1 0 1 0

0 1 0 0 1


 ≃ . . . ≃




1 −2 −2 −1 1

0 1 1 1 −1

0 0 1 1 −2

0 0 0 0 0


 .

Casting out v2 and v3, we find that the desired basis is {u1,u2,v1}. ♠
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We also have a kind of opposite of Lemma 5.44: every spanning set can be shrunk to a basis.

Lemma 5.47: Spanning set can be shrunk to a basis

Let V be a subspace of Rn, and let u1, . . . ,uℓ be a set of vectors spanning V . Then it is possible to

obtain a basis of V by “shrinking” the set, i.e., by removing zero or more vectors from it.

Proof. This is merely a restatement of Theorem 5.19. We obtain the linearly independent subset by remov-

ing the redundant vectors, which can be achieved by the casting-out algorithm. See also Example 5.20.

♠

The following proposition tells us something about the size of a linearly independent set of vectors or the

size of a spanning set of vectors.

Proposition 5.48: Size of a linearly independent or spanning set of vectors

Let V be a k-dimensional subspace of Rn. Then

(a) Every linearly independent set of vectors in V has at most k vectors.

(b) Every spanning set of vectors in V has at least k vectors.

Proof. Both properties follow from the Exchange Lemma (Lemma 5.37). Since V is k-dimensional, it has

some basis consisting of k vectors v1, . . . ,vk.

(a) Suppose u1, . . .ur are linearly independent vectors in V . Since u1, . . .ur are linearly independent and

v1, . . . ,vk are spanning, the Exchange Lemma implies that r ≤ k.

(b) Suppose the vectors u1, . . .us span V . Since v1, . . . ,vk are linearly independent and u1, . . .us are

spanning, the Exchange Lemma implies that k ≤ s.

♠

The next proposition often comes in handy when we need to check that some set of vectors is a basis for

a subspace V , where the dimension of V is already known. If dim(V ) = k, we know that any basis has to

have size k. Interestingly, to check that a set of k vectors is a basis of V , it is sufficient to check either that

it is linearly independent or that it is spanning. This can save half the work in checking that some set of

vectors is a basis (but it only works if the number of vectors is exactly k, the dimension of V ).

Proposition 5.49: Basis test for k vectors in k-dimensional space

Let V be a k-dimensional subspace of Rn, and consider k vectors u1, . . . ,uk in V .

• If u1, . . . ,uk are linearly independent, then they form a basis for V .

• If u1, . . . ,uk span V , then they form a basis for V .

Proof. The first claim is an easy consequence of Lemma 5.44. Assume that u1, . . . ,uk are linearly inde-

pendent. By Lemma 5.44, we can add zero or more vectors to u1, . . . ,uk to obtain a basis of V . On the
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other hand, since V is k-dimensional, every basis must have exactly k elements, so that the only possibility

is that we have added zero vectors. Therefore, {u1, . . . ,uk} is already a basis of V , as claimed.

To prove the second claim, assume that V = span{u1, . . . ,uk}. By Theorem 5.27, there exists a linearly

independent subset of {u1, . . . ,uk} that spans V , i.e., that is a basis for V . But since dim(V ) = k, every

basis must have exactly k elements, so that the only possible such subset is {u1, . . . ,uk} itself. Therefore,

{u1, . . . ,uk} is a basis of V , as claimed. ♠

It is important to note that Proposition 5.49 does not say that every linearly independent set of vectors in

V is a basis. For example, a set of k−1 or fewer linearly independent vectors will not be spanning. Also,

the proposition does not say that every spanning set of vectors in V is a basis. For example, a set of k+1

or more spanning vectors will not be linearly independent. Rather, what the proposition is saying is that if

we have exactly k vectors in a k-dimensional space, then linear independence implies spanning and vice

versa.

Example 5.50: Basis test for 3 vectors in 3-dimensional space

Do the vectors

u1 =




1

2

3


 , u2 =




1

1

1


 , and u3 =




1

1

2




form a basis of R3?

Solution. This is similar to Example 5.30. But because we know that R3 is a 3-dimensional space, and

because we have exactly 3 vectors, by Proposition 5.49, we only need to check either whether u1,u2,u3

are linearly independent or whether they are spanning. We check whether they are linearly independent

by using the casting-out algorithm.




1 1 1

2 1 1

3 1 2


 ≃




1 1 1

0 −1 −1

0 0 −1


 .

Since the matrix has rank 3, the vectors u1,u2,u3 are linearly independent. Therefore, by Proposition 5.49,

they form a basis of R3. ♠

The following proposition is also a consequence of Lemma 5.44. It says that smaller subspaces have

smaller dimension.

Proposition 5.51: Subspace of a subspace

Let V and W be subspaces of Rn, and suppose that V ⊆W . Then dim(V )≤ dim(W ), with equality

only when V =W .

Proof. Consider any basis u1, . . . ,uk of V . Because V ⊆W , the vectors u1, . . . ,uk are linearly independent

elements of W , and therefore can be extended to a basis of W by Lemma 5.44. The resulting basis

of W has at least k elements, i.e., dim(V ) ≤ dim(W ). To prove the last claim, assume moreover that

dim(V ) = dim(W ). In that case, dim(W ) = k, so that the k linearly independent vectors u1, . . . ,uk form a
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basis of W by Proposition 5.49. Since both V and W are spanned by u1, . . . ,uk, we must have V =W , as

claimed. ♠

Exercises

Exercise 5.4.1 For each of the following subspaces of R4, find a basis and determine the dimension.

(a) V1 = span








2

1

1

1


 ,




−1

0

−1

−1


 ,




5

2

3

3


 ,




−1

1

−2

−2








.

(b) V2 = span








0

1

1

−1


 ,




−1

−1

−2

2


 ,




2

3

5

−5


 ,




0

1

2

−2








.

(c) V3 = span








−2

1

1

−3


 ,




−9

4

3

−9


 ,




−33

15

12

−36


 ,




−22

10

8

−24








.

(d) V4 = span








−1

1

−1

−2


 ,




−4

3

−2

−4


 ,




−3

2

−1

−2


 ,




−1

1

−2

−4


 ,




−7

5

−3

−6








.

Exercise 5.4.2 Find a basis and the dimension of each of the following subspaces of Rn.

(a) S1 =








4u+ v−5w

12u+6v−6w

4u+4v+4w



∣∣∣∣∣∣

u,v,w ∈ R



 .

(b) S2 =








2u+6v+7w

−3u−9v−12w

2u+6v+6w

u+3v+3w




∣∣∣∣∣∣∣∣
u,v,w ∈ R





.

(c) S3 =








2u+ v

6v−3u+3w

3v−6u+3w



∣∣∣∣∣∣

u,v,w ∈ R



 .

Exercise 5.4.3 Find a basis and the dimension of each of the following subspaces of Rn.
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(a) W1 =








u

v

w



∣∣∣∣∣∣

u+ v = 0 and u−2w = 0



 .

(b) W2 =








u

v

w



∣∣∣∣∣∣

u+ v+w = 0



 .

(c) S =








u

v

w

x




∣∣∣∣∣∣∣∣
u+ v = w+ x and u+w = v+ x





.

Exercise 5.4.4 Find the vector v that has coordinates

[v]B =




2

1

−3




with respect to the basis B = {u1,u2,u3} of R3, where

u1 =




2

4

1


 , u2 =




1

−1

0


 , and u3 =



−1

0

3


 .

Exercise 5.4.5 Find the coordinates of each of v, w with respect to the basis B = {u1,u2,u3}, where

v =




4

3

8


 , w =



−1

−1

3


 , u1 =




1

0

3


 , u2 =




0

1

1


 , u3 =




2

2

1


 .

Exercise 5.4.6 Extend {u1,u2} to a basis of R3, where

u1 =




3

3

−6


 , u2 =




0

−1

2


 .

Exercise 5.4.7 Let

V =








x

y

z

w




∣∣∣∣∣∣∣∣
x+ y+ z+2w = 0





.

Note that u1,u2 ∈V , where

u1 =




1

1

0

−1


 , u2 =




−2

−2

−2

3


 .
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Is {u1,u2} a basis of V ? If not, extend it to a basis of V by adding additional basis vectors.

Exercise 5.4.8 Shrink {u1,u2,u3,u4} to a basis of R3 by removing redundant vectors, where

u1 =




1

2

3


 , u2 =




0

−1

2


 , u3 =




2

3

8


 , u4 =



−7

2

1


 .

Exercise 5.4.9 Use one of the basis tests of Proposition 5.49 to determine whether the vectors

u1 =




4

−2

1


 , u2 =



−2

4

1


 , and u3 =




1

−2

4




form a basis of R3.

Exercise 5.4.10 Use one of the basis tests of Proposition 5.49 to determine whether the vectors

u1 =




2

−1

−1


 , u2 =



−1

2

−1


 , and u3 =



−1

−1

2




form a basis of R3.

Exercise 5.4.11 In this exercise, we use scalars from the field Z5 of integers modulo 5 instead of real

numbers (see Section 1.8, “Fields”). Find a basis and the dimension of each of the following subspaces

of (Z5)
n.

(a) V1 = span








2

3

1

4


 ,




1

4

3

2


 ,




4

1

2

3


 ,




2

2

1

0








.

(b) V2 =








u

v

w



∣∣∣∣∣∣

2u+ v = 0 and u+4w = 0



 .

(c) V3 =








u

v

w



∣∣∣∣∣∣

u+2v+3w = 0



 .

Exercise 5.4.12 In this exercise, we use scalars from the field Z7 of integers modulo 7 instead of real

numbers. Find the coordinates of v with respect to the basis B = {u1,u2,u3} in (Z7)
3, where

v =




3

1

4


 , u1 =




2

4

2


 , u2 =




1

3

3


 , u3 =




4

1

2


 .
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Exercise 5.4.13 In this exercise, we use scalars from the field Z2 of integers modulo 2 instead of real

numbers. Extend {u1,u2} to a basis of (Z2)
4, where

u1 =




1

0

1

1


 , u2 =




0

1

1

1


 .

Exercise 5.4.14 True or false? Explain.

(a) Every set of 5 vectors in R5 is linearly independent.

(b) Every set of 4 vectors in R5 is linearly independent.

(c) Every set of 6 vectors in R5 is linearly dependent.

(d) No set of 4 vectors spans R5.

(e) Every linearly independent set of 5 vectors in R5 is a basis of R5.

(f) Every linearly independent set of 4 vectors in R5 is a basis of R5.

(g) Some linearly independent set of 4 vectors in R5 is a basis of R5.

(h) Every spanning set of 6 vectors in R5 is a basis of R5.

(i) Every linearly independent set of 4 vectors in R5 spans a 4-dimensional subspace of R5.

Exercise 5.4.15 If you have 6 vectors in R5, is it possible they are linearly independent? Explain.

Exercise 5.4.16 Suppose V and W both have dimension equal to 7 and they are subspaces of R10. What

are the possibilities for the dimension of V ∩W ? Hint: Remember that a linear independent set can be

extended to form a basis.

5.5 Column space, row space, and null space of a matrix

Outcomes

A. Find a basis for the column space, row space, and null space of a matrix.

B. Find the rank and nullity of a matrix.

There are three important spaces we can associate to a matrix. They are called the column space, row

space, and null space, and are defined as follows.
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Definition 5.52: Column space, row space, null space

Let A be an m×n-matrix. The column space of A, written col(A), is the span of the columns. The

row space of A, written row(A), is the span of the rows. The null space of A, written null(A), is the

set

null(A) = {x | Ax = 0} .

Note that the column space is a subspace of Rm and the null space is a subspace of Rn. The row space, on

the other hand, is a set of row vectors. It can be regarded as a subspace of Rn, but only if we regard Rn as

the set of n-dimensional row vectors (and not column vectors, as usual).

Before we give an example, recall that two matrices are called row equivalent if one can be obtained

from the other by performing a sequence of elementary row operations. The point of elementary row

operations is that they do not affect the row space or the null space of the matrix. (They do, however,

affect the column space). The following proposition makes this more precise.

Proposition 5.53: Effect of row operations

Let A and B be row equivalent matrices. Then row(A) = row(B) and null(A) = null(B).

Proof. The fact that elementary row operations do not change the null space is a special case of Theo-

rem 1.11, applied to a homogeneous system. To prove that they do not change the row space is also easy;

we just need to look at each kind of elementary row operation. For example, adding a multiple of one row

to another clearly does not change the span of the rows. ♠

Example 5.54: Basis of column space, row space, and null space

Find a basis for the column space, row space, and null space of the matrix

A =




1 2 1 3 2

1 3 6 0 2

3 7 8 6 6


 .

Solution. The column space of A is the span of the columns of A, i.e.,

col(A) = span








1

1

3


 ,




2

3

7


 ,




1

6

8


 ,




3

0

6


 ,




2

2

6





 .

To find a basis for the column space, we use the casting-out algorithm. The reduced echelon form of A is




1 0 −9 9 2

0 1 5 −3 0

0 0 0 0 0


 . (5.3)

Note that the first two columns of the reduced echelon form are pivot columns. Therefore, by the casting-

out algorithm, the first two columns of A form a basis for the column space. Thus, the following is a basis
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for the column space:

Basis of col(A):








1

1

3


 ,




2

3

7





 .

The rows space of A is the span of the rows of A, i.e.,

row(A) = span
{[

1 2 1 3 2
]

,
[

1 3 6 0 2
]

,
[

3 7 8 6 6
]}

We could find a basis of the row space by writing all three rows as column vectors and using the casting-

out algorithm. However, there is an easier way. By Proposition 5.53, the row space of A is equal to the row

space of the reduced echelon form (5.3). Moreover, the non-zero rows of the reduced echelon form are

clearly linearly independent (no non-zero row can be a linear combination of other rows below it, because

each non-zero row has a pivot entry). Therefore, the non-zero rows of the reduced echelon form form a

basis of the row space.

Basis of row(A):
{[

1 0 −9 9 2
]

,
[

0 1 5 −3 0
]}

.

Finally, the null space of A is just the solution space of the homogeneous system Ax = 0. Thus, finding

a basis of the null space is the same as finding a set of basic solutions. From the reduced echelon form,

we can easily find the general solution of Ax = 0, using three parameters r, s, t corresponding to the three

non-pivot columns of (5.3). The general solution is:

x = r




9

−5

1

0

0



+ s




−9

3

0

1

0



+ t




−2

0

0

0

1




.

Therefore, the following is a basis of the null space:

Basis of null(A):








9

−5

1

0

0




,




−9

3

0

1

0




,




−2

0

0

0

1








.

♠

As the example shows, all three bases, for the column space, the row space, and the null space of A, can

be easily determined from the reduced echelon form. In the next proposition, we use this information to

determine the dimensions of these three spaces. Recall from Definition 1.24 that the rank of a matrix is

equal to the number of pivot entries of its reduced echelon form.

Proposition 5.55: Dimension of column space, row space, and null space

Let A be an m×n-matrix. Then the dimensions of the column space, row space, and null space of

A are as follows:
dim(col(A)) = rank(A),

dim(row(A)) = rank(A),
dim(null(A)) = n− rank(A).
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Proof. Let r = rank(A). Following the same method as in Example 5.54, we can use the casting-out

algorithm to find a basis for the column space. Since the reduced echelon form of A has r pivot columns,

the basis has r elements, and therefore dim(col(A)) = r. Also, the reduced echelon form has r non-zero

rows (since each non-zero row contains exactly one pivot entry). These form a basis of the row space, and

therefore dim(row(A)) = r. Finally, the dimension of the null space is equal to the number of parameters

in the general solution of the system of equations Ax = 0. There is one parameter for each non-pivot

column, and since A has n columns and r pivot columns, it follows that dim(null(A)) = n− r. ♠

Among other things, the proposition states that the “row rank” of a matrix (the dimension of its row space)

is always equal to the “column rank” (the dimension of the column space). This fact is not at all obvious

when one first considers the definition of a matrix. It is often called the rank theorem and is one of

the deep and mysterious facts of linear algebra. It means, for example, that if we do elementary column

operations instead of elementary row operations, we end up with exactly the same number of pivots. Since

the “row rank” and “column rank” are always equal, we are justified in simply calling this quantity the

“rank” of the matrix.

There is also a name for the dimension of the null space. It is called the nullity of the matrix, and is

written nullity(A). The last part of Proposition 5.55 is also called the rank-nullity theorem, and is often

written in the form

rank(A)+nullity(A) = n.

Example 5.56: Rank and nullity

Find the rank and nullity of the matrix

A =




1 2 1 3 2

1 3 6 0 2

1 2 1 3 2

1 3 2 4 0


 .

Solution. The reduced echelon form of A is




1 0 0 0 13
2

0 1 0 2 −5
2

0 0 1 −1 1
2

0 0 0 0 0




,

and so rank(A) = 3 and nullity(A) = 5−3 = 2. ♠

We conclude this section with two useful theorems about matrices.
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Theorem 5.57:

The following are equivalent for an m×n-matrix A.

1. rank(A) = n.

2. row(A) = Rn, i.e., the rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n-matrix AT A is invertible.

5. A is left invertible, i.e., there exists an n×m-matrix B such that BA = I.

6. The system Ax = 0 has only the trivial solution.

Theorem 5.58:

The following are equivalent for an m×n-matrix A.

1. rank(A) = m.

2. col(A) = Rm, i.e., the columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m-matrix AAT is invertible.

5. A is right invertible, i.e., there exists an n×m-matrix B such that AB = I.

6. The system Ax = b is consistent for every b ∈ Rm.

Exercises

Exercise 5.5.1 Determine the rank and nullity and find a basis of the column space, row space, and null

space of each of the following matrices.

(a)

A =




1 3 2

3 9 6

1 3 2




(b)

B =




1 3 0 2

3 9 1 7

1 3 1 3



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(c)

C =




1 0 3

3 1 10

1 1 4

1 −1 2




(d)

D =




0 0 −1 0 1

1 2 3 −2 −18

1 2 2 −1 −11

−1 −2 −2 1 11




(e)

E =




1 0 3 0

3 1 10 0

−1 1 −2 1

1 −1 2 −2




Exercise 5.5.2 Find null(A) for the following matrices.

(a)

A =

[
2 3

4 6

]

(b)

A =




1 0 −1

−1 1 3

3 2 1




(c)

A =




2 4 0

3 6 −2

1 2 −2




(d)

A =




2 −1 3 5

2 0 1 2

6 4 −5 −6

0 2 −4 −6




Exercise 5.5.3 In this exercise, we use scalars from the field Z5 of integers modulo 5 instead of real

numbers (see Section 1.8, “Fields”). Determine the rank and nullity and find a basis of the column space,

row space, and null space of the following matrix over Z5.

A =




2 4 1

1 2 3

3 1 2



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Exercise 5.5.4 Show that if A is an m×n-matrix, then null(A) is a subspace of Rn.

Exercise 5.5.5 Let A be an m×n-matrix. Show that col(A) = {Au | u ∈ Rn}.

Exercise 5.5.6 Show that rank(A) = rank(AT ).

Exercise 5.5.7 For invertible matrices B and C of appropriate size, show that rank(A) = rank(BA) =
rank(AC).

Exercise 5.5.8 Suppose A is an m×n-matrix and B is an n× p-matrix. Show that

nullity(AB)≤ nullity(A)+nullity(B).

Hint: Consider the subspace col(B)∩ null(A) and suppose a basis for this subspace is {w1, . . . ,wk}.
Let {z1, . . . ,zk} be such that Bzi = wi. Now suppose {u1, . . . ,ur} is a basis for null(B), and argue that

null(AB)⊆ span{u1, . . . ,ur,z1, . . . ,zk}.



6. Linear transformations in Rn

6.1 Linear transformations

Outcomes

A. Determine whether a vector function T : Rn→ Rm is a linear transformation.

In calculus, a function (or map) f : R→ R is a rule that maps a real number x ∈ R to a real number

f (x) ∈ R. In linear algebra, we can generalize this concept to vectors. A vector function T : Rn→ Rm is

a rule that inputs an n-dimensional vector v ∈ Rn and outputs an m-dimensional vector T (v) ∈ Rm. The

following are some examples of vector functions:

T1

([
x

y

])
=




x2

x+ y

y2


 , T2






x

y

z




=




x+ y

x+ y+ z

0


 , T3






x

y

z




=

[
ex+z

√
y

]
. (6.1)

Of these, the first is a function T1 : R2 → R3, the second is a function T2 : R3 → R3, and the third is a

function T3 : R3→ R2. We can evaluate a vector function by applying it to a vector, for example,

T1

([
1

2

])
=




12

1+2

22


=




1

3

4


 , T1

([
0

1

])
=




02

1+1

12


=




0

1

1


 ,

and so on. The study of arbitrary vector functions and their derivatives and integrals is the subject of

multivariable calculus. In linear algebra, we will only be concerned with linear vector functions, which

are also called linear transformations or linear maps. They are defined as follows.

Definition 6.1: Linear transformation

A vector function T : Rn → Rm is called a linear transformation, or simply linear, if it satisfies

the following two conditions:

1. T preserves addition, i.e., for all v,w ∈ Rn, we have T (v+w) = T (v)+T (w);

2. T preserves scalar multiplication, i.e, for all v ∈ Rn and scalars k, we have T (kv) = kT (v).

217
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Example 6.2: Linear and non-linear transformations

Which of the vector functions in (6.1) are linear transformations?

Solution.

(a) The function T1 is not a linear transformation. For example, let v =

[
1

0

]
. Then

T1(v) = T1

([
1

0

])
=




1

1

0


 and T1(2v) = T1

([
2

0

])
=




4

2

0


 6= 2




1

1

0


 .

Since T1(2v) 6= 2T1(v), the vector function T1 does not preserve scalar multiplication, and therefore

it is not a linear transformation.

(b) The function T2 is a linear transformation. For example, to prove that T2 preserves addition, consider

two arbitrary vectors

v =




x1

y1

z1


 and w =




x2

y2

z2


 .

We have

T2(v+w) = T2






x1 + x2

y1 + y2

z1 + z2




 =




(x1 + x2)+(y1 + y2)
(x1 + x2)+(y1 + y2)+(z1+ z2)

0




and

T2(v)+T2(w) =




x1 + y1

x1 + y1 + z1

0


+




x2 + y2

x2 + y2 + z2

0


 =




(x1 + y1)+(x2 + y2)
(x1 + y1 + z1)+(x2 + y2 + z2)

0


 .

Since the two sides are evidently equal, T2 preserves addition. The fact that it preserves scalar

multiplication can be shown by a similar calculation.

(c) The function T3 is not a linear transformation. For example, consider v =




0

1

0


 and w =




1

1

0


.

Then

T3(v+w) = T3






1

2

0




 =

[
e√
2

]
,

and

T3(v)+T3(w) =

[
1

1

]
+

[
e

1

]
=

[
e+1

2

]
.

Since T3(v+w) 6= T3(v)+T3(w), the vector function T3 does not preserve addition, and therefore it

is not linear.
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♠

An easy fact about linear transformation is that they preserve the origin, i.e., they satisfy T (0) = 0. This

can be seen, for example, by considering T (0) = T (0+0) = T (0)+T (0) and then subtracting T (0) from

both sides of the equation. This gives an easier way to see that T3 in the above example is not a linear

transformation, since T3(0) 6= 0. On the other hand, of course not every function that preserves the origin

is linear. For example, T1 is not linear although it satisfies T1(0) = 0.

The following characterization of linearity is often useful, as it permits us to check just one property

instead of two.

Proposition 6.3: Alternative characterization of linear transformations

A vector function T : Rn → Rm is linear if and only if it satisfies the following condition, for all

v,w ∈ Rn and scalars a,b:

T (av+bw) = aT (v)+bT (w).

Proof. First, assume that T is linear. Then from preservation of addition and scalar multiplication, we

have T (av+bw) = T (av)+T (bw) = aT (v)+bT (w). Conversely, assume that T satisfies T (av+bw) =
aT (v) + bT (w) for all vectors v,w and scalars a,b. Then we get preservation of addition by setting

a = b = 1, and preservation of scalar multiplication by setting b = 0. ♠

Exercises

Exercise 6.1.1 Which of the following vector functions are linear transformations?

T1

([
x

y

])
=




2x+ y

x−2y

−x− y


 , T2






x

y

z




=




x+ y2

(x+ y)z
0


 , T3






x

y

z




=

[
0

0

]
.

Exercise 6.1.2 Consider the following functions T : R3→ R2. Explain why each of these functions T is

not linear.

(a) T




x

y

z


=

[
x+2y+3z+1

2y−3x+ z

]

(b) T




x

y

z


=

[
x+2y2 +3z

2y+3x+ z

]

(c) T




x

y

z


=

[
sinx+2y+3z

2y+3x+ z

]
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(d) T




x

y

z


=

[
x+2y+3z

2y+3x− lnz

]

Exercise 6.1.3 Let A be an m×n-matrix. Show the vector function T : Rn→ Rm defined by T (v) = Av is

a linear transformation.

Exercise 6.1.4 Let u ∈ Rn be a fixed vector. Show that the function T defined by T (v) = v−proju(v) is a

linear transformation.

Exercise 6.1.5 Let u ∈ Rn be a fixed non-zero vector. The function T defined by T (v) = u+ v has the

effect of translating all vectors by adding u. Show this is not a linear transformation.

6.2 The matrix of a linear transformation

Outcomes

A. Find the matrix corresponding to a linear transformation T : Rn→ Rm.

An important example of linear transformations are the so-called matrix transformations.

Proposition 6.4: Matrix transformations are linear transformations

Let A be an m× n-matrix, and consider the vector function T : Rn → Rm defined by T (v) = Av.

Then T is a linear transformation.

Proof. This follows from the laws of matrix multiplication. Namely, by the distributive law, we have

A(v+w)= Av+Aw, showing that T preserves addition. And by the compatibility of matrix multiplication

and scalar multiplication, we have A(kv) = k(Av), showing that T preserves scalar multiplication. ♠

In fact, matrix transformations are not just an example of linear transformations, but they are essentially

the only example. One of the central theorems in linear algebra is that all linear transformations T : Rn→
Rm are in fact matrix transformations. Therefore, a matrix can be regarded as a notation for a linear

transformation, and vice versa. This is the subject of the following theorem.

Theorem 6.5: Linear transformations are matrix transformations

Let T : Rn→Rm be any linear transformation. Then there exists an m×n-matrix A such that for all

v ∈ Rn,

T (v) = Av.

In other words, T is a matrix transformation.
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Proof. Suppose T : Rn→Rm is a linear transformation and consider the standard basis {e1, . . . ,en} of Rn.

For all i, define ui = T (ei), and let A be the matrix that has u1, . . . ,un as its columns. We claim that A is

the desired matrix, i.e., that T (v) = Av holds for all v ∈ Rn.

To see this, let

v =




x1
...

xn




be some arbitrary element of Rn. Then v = x1e1 + . . .+ xnen, and we have:

T (v) = T (x1e1 + . . .+ xnen)
= T (x1e1)+ . . .+T (xnen) by linearity

= x1T (e1)+ . . .+ xnT (en) by linearity

= x1u1 + . . .+ xnun by definition of ui

= Av by the column method of matrix multiplication.

♠

In summary, the matrix corresponding to the linear transformation T has as its columns the vectors

T (e1), . . . ,T (en), i.e., the images of the standard basis vectors. We can visualize this matrix as follows:

A =




| |
T (e1) · · · T (en)
| |


 .

Example 6.6: The matrix of a linear transformation

Suppose T : R3→ R2 is a linear transformation where

T






1

0

0




=

[
1

2

]
, T






0

1

0




=

[
9

−3

]
, and T






0

0

1




=

[
1

1

]
.

Find the matrix A such that T (v) = Av for all v.

Solution. By Theorem 6.5, the columns of A are T (e1), T (e2), and T (e3). Therefore,

A =

[
1 9 1

2 −3 1

]
.

♠
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Example 6.7: The matrix of a linear transformation

Let T : R3→ R2 be the linear transformation defined by

T






x

y

z




=

[
x+ y

x+2y− z

]
,

for all x,y,z ∈ R. Find the matrix of this linear transformation.

Solution. We compute the images of the standard basis vectors:

T (e1) = T






1

0

0




 =

[
1

1

]
,

T (e2) = T






0

1

0




 =

[
1

2

]
,

T (e3) = T






0

0

1




 =

[
0

−1

]
.

The matrix A has T (e1), T (e2), and T (e3) as its columns. Therefore,

A =

[
1 1 0

1 2 −1

]
.

♠

Example 6.8: Matrix of a projection map

Let u =




1

2

3


 and let T : R3→ R3 be the projection map defined by

T (v) = proju(v)

for all v ∈ R3.

(a) Is T a linear transformation?

(b) If yes, find the matrix of T .

Solution.

(a) Recall the formula for the projection of v onto u:

proju(v) =
u·v
u·u u.
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In the situation we are interested in, u is a fixed vector, and v is the input to the function T . Given

any two vectors v,w, and using the distributive laws of the dot product and scalar multiplication, we

have:

proju(v+w) =
u·(v+w)

u·u u =

(
u·v
u·u +

u·w
u·u

)
u =

u·v
u·u u+

u·w
u·u u = proju(v)+proju(w).

Therefore, the function T (v) = proju(v) preserves addition. Also, given any scalar k, we have

proju(kv) =
u·(kv)

u·u u =

(
k

u·v
u·u

)
u = k

(
u·v
u·u u

)
= k proju(v).

Therefore, the function T preserves scalar multiplication. It follows that T is a linear transformation.

(b) To find the matrix of T , we must compute the images of the standard basis vectors T (e1), . . . ,T (e3).
We compute

T (e1) = proju(e1) =
u·e1

u·u u =
1

14




1

2

3


 ,

T (e2) = proju(e2) =
u·e2

u·u u =
2

14




1

2

3


 ,

T (e3) = proju(e3) =
u·e3

u·u u =
3

14




1

2

3


 .

Hence the matrix of T is

A =
1

14




1 2 3

2 4 6

3 6 9


 .

♠

Exercises

Exercise 6.2.1 For each of the following vector functions T : Rn→ Rn, show that T is a linear transfor-

mation and find the corresponding matrix A such that T (x) = Ax.

(a) T multiplies the j th component of v by a non-zero number b.

(b) T adds b times the j th component of v to the i th component.

(c) T switches the i th and j th components.
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Exercise 6.2.2 Assume that T : Rn→ Rm is a linear transformation, and that u1, . . . ,un is a basis of Rn.

For all i = 1, . . . ,n, let vi = T (ui). Let A be the matrix that has u1, . . . ,un as its columns, and let B be the

matrix that has v1, . . . ,vn as its columns. Show that A is invertible and the matrix of T is BA−1.

Exercise 6.2.3 Suppose T is a linear transformation such that

T




1

2

−6


 =




5

1

3


 , T



−1

−1

5


 =




1

1

5


 , and T




0

−1

2


 =




5

3

−2


 .

Find the matrix of T . Hint: use Exercise 6.2.2.

Exercise 6.2.4 Suppose T is a linear transformation such that

T




1

1

−8


 =




1

3

1


 , T



−1

0

6


 =




2

4

1


 , and T




0

−1

3


 =




6

1

−1


 .

Find the matrix of T . Hint: use Exercise 6.2.2.

Exercise 6.2.5 Consider the following linear transformations T : R3 → R2. For each, determine the

matrix A such that T (x) = Ax.

(a) T




x

y

z


=

[
x+2y+3z

2y−3x+ z

]

(b) T




x

y

z


=

[
7x+2y+ z

3x−11y+2z

]

(c) T




x

y

z


=

[
3x+2y+ z

x+2y+6z

]

(d) T




x

y

z


=

[
2y−5x+ z

x+ y+ z

]

Exercise 6.2.6 Find the matrix for T (w) = projv(w), where v = [1,−2,3]T .

Exercise 6.2.7 Find the matrix for T (w) = projv(w), where v = [1,5,3]T .
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6.3 Geometric interpretation of linear transformations

Outcomes

A. Find the matrix of rotations, reflections, scalings, and shearings in R2 and R3.

In this section, we will examine some special examples of linear transformations in R2 and R3 including

rotations and reflections.

Example 6.9: Rotation by 90◦ in R2

Consider the linear transformation T : R2→ R2 that is given by a counterclockwise rotation by 90

degrees. Find the matrix A corresponding to this linear transformation. Find a formula for T .

Solution. To visualize a vector function on R2, it is often useful to consider a pair of before-and-after

pictures such as the following:

e1

e2

“before”

T7−→

T (e1) =
[

0
1

]

T (e2) =
[−1

0

]

“after”

The picture illustrates how the function T rotates the entire plane (including the pink letter “F”) by 90

degrees counterclockwise. The picture also illustrates that when we apply the rotation T to the first and

second standard basis vectors e1 and e2, we obtain the vectors

T (e1) =

[
0

1

]
and T (e2) =

[
−1

0

]
.

The matrix of T has these vectors as its columns. Therefore, the matrix of T is

A =

[
0 −1

1 0

]
.
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Finally, we can use this to find a formula for the counterclockwise 90 degree rotation T :

T

([
x

y

])
=

[
0 −1

1 0

][
x

y

]
=

[
−y

x

]
.

To illustrate how this works, consider the top right corner of the letter “F”. It has the coordinates (0.6,1).
Applying the function T to the coordinate vector, we get

T

([
0.6

1

])
=

[
0 −1

1 0

][
0.6

1

]
=

[
−1

0.6

]
.

These are precisely the coordinates of the corresponding point on the letter “F” after the rotation. ♠

Example 6.10: Reflection about the y-axis in R2

Let T : R2 → R2 be a reflection about the y-axis. Find the matrix A corresponding to this linear

transformation, and a formula for T .

Solution. The before-and-after picture for a reflection about the y-axis looks like this:

e1

e2

T7−→
T (e1) =

[−1
0

]

T (e2) =
[

0
1

]

We see that

T (e1) =−e1 =

[
−1

0

]
and T (e2) = e2 =

[
0

1

]
.

Therefore, the matrix of T is

A =

[
−1 0

0 1

]
.

The formula for a reflection about the y-axis is:

T

([
x

y

])
=

[
−1 0

0 1

][
x

y

]
=

[
−x

y

]
.

♠
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Example 6.11: Rotation by an arbitrary angle in R2

Find the matrix A for a counterclockwise rotation by angle θ in R2.

Solution. The before-and-after picture is as follows:

e1

e2

T7−→ θ

T (e1) =
[

cosθ
sinθ

]
T (e2) =

[−sinθ
cosθ

]

Thus the matrix of T is

A =

[
cosθ −sinθ
sinθ cosθ

]
.

♠

Example 6.12: More linear transformations of the plane

Describe the linear transformation that is given by each of the following matrices. Draw a before-

and-after picture for each.

(a) A =

[
0 1

1 0

]
, (b) B =

[
2 0

0 2

]
, (c) C =

[
1
2 0

0 2

]
, (d) D =

[
1 1

0 1

]
.

Solution. To draw each before-and-after picture, we can start by drawing the images of the two standard

basis vectors e1 and e2, which are the columns of the transformation matrix. We have also drawn the image

of the letter “F”, to better illustrate the effect of each transformation.
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(a)

e1

e2

A7−→
T (e1)

T (e2)

(b)

e1

e2

B7−→
T (e1)

T (e2)

(c)

e1

e2

C7−→
T (e1)

T (e2)
(d)

e1

e2

D7−→
T (e1)

T (e2)

The transformation A is a reflection about the line x = y. The transformation B is a scaling by a factor of

2. The transformation C is also a scaling, but by a different factor in the x- and y-directions. It scales the

x-direction by a factor of 1
2 (or equivalently, shrinks it by a factor of 2), and scales the y-direction by a

factor of 2. The transformation D is called a shearing. It keeps one line (the x-axis) fixed, while shifting

all other points by varying distances along lines that are parallel to the x-axis. ♠

Example 6.13: Rotation in R3

Find the matrix of a rotation by angle θ about the z-axis in 3-dimensional space, counterclockwise

when viewed from above.

Solution. Here is the before-and-after picture. A rotation in 3-dimensional space is usually harder to

visualize than in the plane, but fortunately, the rotation is about the z-axis, so all the “action” is taking

place in the xy-plane.

e1

e2

e3

T7−→
θ

T (e1) =

[
cosθ
sinθ

0

]

T (e2) =

[−sinθ
cosθ

0

]
T (e3) =

[
0
0
1

]
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Therefore, the matrix of the rotation is

A =




cosθ −sinθ 0

sinθ cosθ 0

0 0 1


 .

♠

Exercises

Exercise 6.3.1 Find the matrix for the linear transformation that rotates every vector in R2 by an angle

of π/3.

Exercise 6.3.2 Find the matrix for the linear transformation that reflects every vector in R2 about the

x-axis.

Exercise 6.3.3 Find the matrix for the linear transformation that reflects every vector in R2 about the line

y =−x.

Exercise 6.3.4 Find the matrix for the linear transformation that stretches R2 by a factor of 3 in the

vertical direction.

Exercise 6.3.5 Find the matrix of the linear transformation that reflects every vector in R3 about the

xy-plane.

Exercise 6.3.6 Find the matrix of the linear transformation that reflects every vector in R3 about plane

x = z.

Exercise 6.3.7 Describe the linear transformation that is given by each of the following matrices. Draw

a before-and-after picture for each.

(a) A =

[
1 −1

1 1

]
, (b) B =

[
0 2

1 0

]
, (c) C =

[
1 0

−1 1

]
, (d) D =

[
1 0

0 0

]
.

Exercise 6.3.8 Let u =

[
a

b

]
be a unit vector in R2. Find the matrix that reflects all vectors about this

vector, as shown in the following picture.

u
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6.4 Properties of linear transformations

Outcomes

A. Use properties of linear transformations to solve problems.

B. Find the composite of transformations and the inverse of a transformation.

We begin by noting that linear transformations preserve the zero vector, negation, and linear combinations.

Proposition 6.14: Properties of linear transformations

Let T : Rn→ Rm be a linear transformation. Then

• T preserves the zero vector: T (0) = 0.

• T preserves negation: T (−v) =−T (v).

• T preserves linear combinations:

T (a1v1 +a2v2 + . . .+akvk) = a1T (v1)+a2T (v2)+ . . .+akT (vk).

Example 6.15: Linear combination

Let T : R3→ R4 be a linear transformation such that

T






1

3

1




=




4

4

0

−2


 and T






4

0

5




=




4

5

−1

5


 .

Find T





−7

3

−9




.

Solution. Using the third property in Proposition 6.14, we can find T





−7

3

−9




 by writing



−7

3

−9


 as

a linear combination of




1

3

1


 and




4

0

5


. By solving the appropriate system of equations, we find that



−7

3

−9


=




1

3

1


−2




4

0

5


 .
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Therefore,

T





−7

3

−9




 = T






1

3

1


−2




4

0

5






= T




1

3

1


−2T




4

0

5


 =




4

4

0

−2


−2




4

5

−1

5


 =




−4

−6

2

−12


 .

♠

Suppose that we first apply a linear transformation T to a vector, and then the linear transformation S to

the result. The resulting two-step transformation is also a linear transformation, called the composition of

T and S.

Definition 6.16: Composition of linear transformations

Let S : Rk→Rn and T : Rn→Rm be linear transformations. Then the composition of S and T (also

called the composite transformation of S and T ) is the linear transformation

T ◦S : Rk→Rm

that is defined by

(T ◦S)(v) = T (S(v)),

for all v ∈ Rk.

Notice that the resulting vector will be in Rm. Be careful to observe the order of transformations. The

composite transformation T ◦ S means that we are first applying S, and then T . Composition of linear

transformations is written from right to left. The composition T ◦S is sometimes pronounced “T after S”.

Theorem 6.17: Matrix of a composite transformation

Let S : Rk → Rn and T : Rn → Rm be linear transformations. Let A be the matrix corresponding

to S, and let B be the matrix corresponding to T . Then the matrix corresponding to the composite

linear transformation T ◦S is BA.

Proof. For all v ∈ Rk, we have

(T ◦S)(v) = T (S(v)) = B(Av) = (BA)v.

Therefore, BA is the matrix corresponding to T ◦S. ♠

Example 6.18: Two rotations

Find the matrix for a counterclockwise rotation by angle θ +φ in two different ways, and compare.
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Solution. Let Aθ be the matrix of a rotation by θ , and let Aφ be the matrix of a rotation by angle φ . We

calculated these matrices in Example 6.11. Then a rotation by the angle θ +φ is given by the product of

these two matrices:

Aθ Aφ =

[
cosθ −sinθ
sinθ cosθ

][
cosφ −sinφ
sinφ cosφ

]

=

[
cosθ cosφ − sinθ sinφ −cosθ sinφ − sinθ cosφ
sinθ cosφ + cosθ sinφ cosθ cosφ − sinθ sinφ

]
.

On the other hand, we can compute the matrix for a rotation by angle θ +φ directly:

Aθ+φ =

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
.

The fact that these matrices are equal amounts to the well-known trigonometric identities for the sum of

two angles, which we have here derived using linear algebra concepts:

sin(θ +φ) = sinθ cosφ + cosθ sinφ ,

cos(θ +φ) = cosθ cosφ − sinθ sinφ .

♠

Example 6.19: Multiple rotations in R3

Find the matrix of the linear transformation T : R3→ R3 that is given as follows: a rotation by 30

degrees about the z-axis, followed by a rotation by 45 degrees about the x-axis.

Solution. It would be quite difficult to picture the transformation T in one step. Fortunately, we don’t have

to do this. All we have to do is find the matrix for each rotation separately, then multiply the two matrices.

We have the be careful to multiply the matrices in the correct order.

Let B be the matrix for a 30-degree rotation about the z-axis. It is given exactly as in Example 6.13:

B =




cos30◦ −sin30◦ 0

sin30◦ cos30◦ 0

0 0 1


=




√
3

2 −1
2 0

1
2

√
3

2 0

0 0 1


 .

Let C be the matrix for a 45-degree rotation about the x-axis. It is analogous to Example 6.13, except that

the rotation takes place in the yz-plane instead of the xy-plane.

C =




1 0 0

0 cos45◦ −sin45◦

0 sin45◦ cos45◦


=




1 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2


 .

Finally, to apply the linear transformation T to a vector v, we must first apply B and then C. This means

that T (v) = C(Bv). Therefore, the matrix corresponding to T is CB. Note that it is important that we



6.4. Properties of linear transformations 233

multiply the matrices corresponding to each subsequent rotation from right to left.

A = CB =




1 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2







√
3

2 −1
2 0

1
2

√
3

2 0

0 0 1


 =




√
3

2 −1
2 0

1

2
√

2

√
3

2
√

2
− 1√

2
1

2
√

2

√
3

2
√

2

1√
2


 .

♠

We can also consider the inverse of a linear transformation. The inverse of T , if it exists, is a linear

transformation that undoes the effect of T .

Definition 6.20: Inverse of a transformation

Let T ,S : Rn→ Rn be linear transformations. Suppose that for each v ∈ Rn,

(S ◦T )(v) = v

and

(T ◦S)(v) = v.

Then S is called the inverse of T , and we write S = T−1.

Example 6.21: Inverse of a transformation

What is the inverse of a counterclockwise rotation by the angle θ in R2?

Solution. The inverse is a clockwise rotation by the same angle. ♠

It is perhaps not entirely unexpected that the matrix of T−1 is exactly the inverse of the matrix of T , if it

exists.

Theorem 6.22: Matrix of the inverse transformation

Let T : Rn → Rn be a linear transformation and let A be the corresponding n× n-matrix. Then T

has an inverse if and only if the matrix A is invertible. In this case, the matrix of T−1 is A−1.

Example 6.23: Matrix of the inverse transformation

Find the inverse of the linear transformation T : R2→ R2 given by

T

([
x

y

])
=

[
2x+ y

7x+4y

]
.

Solution. The easiest way to do this is to find the matrix of T . We have

T

([
1

0

])
=

[
2

7

]
and T

([
0

1

])
=

[
1

4

]
.
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Therefore, the matrix of T is

A =

[
2 1

7 4

]
.

The inverse of A is

A−1 =

[
4 −1

−7 2

]
.

Therefore, T−1 is the linear transformation defined by

T−1

([
x

y

])
=

[
4 −1

−7 2

][
x

y

]
=

[
4x− y

−7x+2y

]
.

♠

Exercises

Exercise 6.4.1 Find the matrix for the linear transformation that reflects every vector in R2 about the

x-axis and then reflects about the y-axis.

Exercise 6.4.2 Find the matrix for the linear transformation that rotates every vector in R2 by an angle

of 2π/3 and then reflects about the x-axis.

Exercise 6.4.3 Find the matrix for the linear transformation that rotates every vector in R2 by a counter-

clockwise angle of π/6 and then reflects about the x-axis followed by a reflection about the y-axis.

Exercise 6.4.4 Find the matrix for the linear transformation that reflects every vector in R2 about the

x-axis and then rotates by an angle of π/4.

Exercise 6.4.5 Find the matrix of the linear transformation that rotates every vector in R3 counterclock-

wise about the z-axis when viewed from the positive z-axis by an angle of 30 degrees and then reflects

about the xy-plane.

Exercise 6.4.6 Prove the three properties in Proposition 6.14, using only the definition of a linear trans-

formation (i.e., the fact that it preserves addition and scalar multiplication).

Exercise 6.4.7 Let T be the linear transformation with matrix A =

[
3 1

−1 2

]
and S the linear transfor-

mation with matrix B =

[
0 −2

4 2

]
. Find the matrix of S ◦T . Compute (S ◦T )(v) for v =

[
2

−1

]
.

Exercise 6.4.8 Let T be a linear transformation and suppose T

([
1

−4

])
=

[
2

−3

]
. Suppose S is the

linear transformation with matrix B =

[
1 2

−1 3

]
. Find (S ◦T )(v) for v =

[
1

−4

]
.
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Exercise 6.4.9 What is the inverse of a reflection? Rotation? Shearing? Scaling?

Exercise 6.4.10 Let T be a linear transformation with matrix A =

[
2 1

5 2

]
. Find the matrix of T−1.

Exercise 6.4.11 Let T be the linear transformation given by T

([
x

y

])
=

[
4x−3y

2x−2y

]
. Find the matrix

of T−1.

Exercise 6.4.12 Let T be a linear transformation and suppose T

([
1

2

])
=

[
9

8

]
and T

([
0

−1

])
=

[
−4

−3

]
. Find the matrix of T and the matrix of T−1.

6.5 Application: Perspective rendering

As an application of linear transformations, we consider the problem of perspective rendering. Imagine

some object has been described by coordinates in 3-dimensional space, and we wish to make an image of

the object as it would be seen by a human eye or by a camera. The process of computing such an image is

known as rendering.

Conceptually, the rendering process makes use of a camera, which we will assume is located at the

origin of a 3-dimensional coordinate system called the camera coordinate system, and an image plane,

which we will assume is the plane z = 1 in camera coordinates. The 3-dimensional space also contains

one or more objects that we wish to render. We can consider the object to be described by a set of points.

For each point p on the object, we draw a straight line from p to the camera, and let p′ be the point where

this line intersects the image plane. The point p of the object is rendered as the point p′ in the image. This

process is illustrated in the following figure:

Camera
Image plane

Object

p

p'

zx

y
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Object coordinates

It is convenient to describe each object in its own coordinate system, called the object coordinate system.

To illustrate this concept, we will consider a cube of side length 2, centered at the origin. The 8 corners of

this cube have the following coordinates in the object coordinate system:




1

1

1


 ,




1

1

−1


 ,




1

−1

1


 ,




1

−1

−1


 ,



−1

1

1


 ,



−1

1

−1


 ,



−1

−1

1


 ,



−1

−1

−1


 .

For later reference, let us call this the standard cube. The following picture shows the standard cube

within its object coordinate system:

y
x

z

Conversion to camera coordinates

Before we render an object, we need to place it in some appropriate location relative to the camera. We do

this by specifying four vectors q, ax, ay, and az in R3. Here, q is the origin of the object coordinate system,

relative to the camera coordinate system. The vectors ax, ay, and az are the axes of the object coordinate

system, relative to the camera coordinate system, as shown in the following illustration:

Camera

x

y

z

ax ay

az

q

Thus, given a point with object coordinates v =




x

y

z


, we can find its camera coordinates p =




px

py

pz


 by

the following formula:

p = q+ xax + yay + zaz.
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If we write A for the 3×3-matrix whose columns are ax, ay, and az, we can also write this formula more

succinctly as

p = q+Av.

Example 6.24: Converting object coordinates to camera coordinates

Let

q =




0

0.5

5


 , A =




0.8 0.6 0

0 0 1

0.6 −0.8 0


 .

Convert each of the 8 corners of the standard cube from object coordinates to camera coordinates.

Solution. Let v1, . . . ,v8 be the object coordinates of the 8 corners of the cube:




1

1

1


 ,




1

1

−1


 ,




1

−1

1


 ,




1

−1

−1


 ,



−1

1

1


 ,



−1

1

−1


 ,



−1

−1

1


 ,



−1

−1

−1


 .

We convert each of them to camera coordinates using the formula pi = q+Avi:

p1 =




0

0.5

5


+




0.8 0.6 0

0 0 1

0.6 −0.8 0






1

1

1


 =




1.4

1.5

4.8


 ,

p2 =




0

0.5

5


+




0.8 0.6 0

0 0 1

0.6 −0.8 0






1

1

−1


 =




1.4

−0.5

4.8


 ,

p3 =




0

0.5

5


+




0.8 0.6 0

0 0 1

0.6 −0.8 0






1

−1

1


 =




0.2

1.5

6.4


 ,

and so on. Continuing in the same fashion, we find p1, . . . ,p8:




1.4

1.5

4.8


 ,




1.4

−0.5

4.8


 ,




0.2

1.5

6.4


 ,




0.2

−0.5

6.4


 ,



−0.2

1.5

3.6


 ,



−0.2

−0.5

3.6


 ,



−1.4

1.5

5.2


 ,



−1.4

−0.5

5.2


 . (6.2)

♠

We can also write f : R3 → R3 for the function that converts object coordinates to camera coordinates,

i.e.,

f (v) = q+Av.

We note that this is not a linear function, because f (0) 6= 0. The function f is called an affine function,

which means that it is a linear function v 7→ Av followed by a translation v 7→ q+v.
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Rendering

Once we know the camera coordinates p =




px

py

pz


 of a point, we need to render the point, i.e., find its

coordinates in the image plane.

Camera

x

y

z

p

p′

Image plane

Since the camera is located at the origin, the line that passes through the camera and the point p has the

parametric equation

r = tp =




t px

t py

t pz


 .

Since the image plane is the plane z = 1, we must set t such that t pz = 1, i.e., t = 1
pz

. Therefore, the

coordinates of the rendered point are

p′ =
1

pz

p =




px/pz

py/pz

1


 .

Finally, since the image plane is 2-dimensional, we can forget the now useless z-coordinate, and render

the point at the coordinates

[
px/pz

py/pz

]
in the 2-dimensional image plane.

Example 6.25: Rendering

Render the cube from Example 6.24.

Solution. We must apply the rendering function

g






px

py

pz




=

[
px/pz

py/pz

]
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to each of the corners of the cube from (6.2). We have

g






1.4

1.5

4.8




 =

[
1.4/4.8

1.5/4.8

]
=

[
0.292

0.312

]
,

g






1.4

−0.5

4.8




 =

[
1.4/4.8

−0.5/4.8

]
=

[
0.292

−0.104

]
,

g






0.2

1.5

6.4




 =

[
0.2/6.4

1.5/6.4

]
=

[
0.031

0.234

]
,

and so on. The 8 rendered points are:
[

0.292

0.312

]
,

[
0.292

−0.104

]
,

[
0.031

0.234

]
,

[
0.031

−0.078

]
,

[
−0.056

0.417

]
,

[
−0.056

−0.139

]
,

[
−0.269

0.288

]
,

[
−0.269

−0.096

]
.

Drawing these in the 2-dimensional image plane, we get the following picture, which is the final perspective-

rendered image of the cube:

♠

Animation

We placed our object in the camera coordinate system using a coordinate transformation function

f (v) = q+Av.

One of the advantages of using such a coordinate transformation (as opposed to specifying the object

points directly in the camera coordinate system) is that this makes it very easy to move the objects around,

rotate them, scale and shrink them, etc. For example:

1. To move the object to a different location, we only have to change the vector q.

2. To rotate the object about its own z-axis, we only have to replace v by Rθ v, where Rθ is the matrix

for a rotation about the z-axis by angle θ :

Rθ =




cosθ −sinθ 0

sinθ cosθ 0

0 0 1


 .
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Similarly to Rθ , we can also insert other transformation matrices (for example, we could rotate the object

about its x-axis instead of its z-axis, scale the object, etc). We can even make an animation by rendering

the object repeatedly for different values of these parameters.

Example 6.26: An animated cube

Make an animation of a rotating, moving cube. The animation is 5 seconds long (i.e., time t ranges

from 0 to 5). The location of the cube at time t, in camera coordinates, is given by

q(t) =



−3+3t

−3

8+3t


 .

The transformation matrix A is as in Example 6.24. Moreover, the cube should make one quarter

rotation about its z-axis during the time of the animation, i.e., it should be transformed by Rθ , where

θ = π
10 t. Compute 6 frames of the animation, for t = 0, t = 1, . . . , t = 5.

Solution. For each of the animation frames t ∈ {0,1,2,3,4,5}, we do a calculation very similar to that of

Examples 6.24 to convert the cube coordinates to camera coordinates, using the coordinate transformation

f (v) = q(t)+ARθ v,

where θ = π
10 t. We then render each of the frames using the same method as in Example 6.25. We skip

the detailed calculations, which are best done by computer (though they could be done by hand, of course,

as we did in Examples 6.24 and 6.25). The final rendered frames look like this:

t = 0
t = 1

t = 2 t = 3 t = 4t = 5

Note that there is a bit of distortion in the first and last cubes. This is because the camera is very close to

the image plane (the scene has been “filmed” with a wide-angle camera). The distortion goes away if you

close one eye and bring the other eye very close to the page. ♠



7. Determinants

7.1 Determinants of 2×2- and 3×3-matrices

Outcomes

A. Calculate the determinant of 2×2-matrices and 3×3-matrices.

Let A be an n× n-matrix. The determinant of A, denoted by det(A), is a very important number which

we will explore throughout this chapter.

The determinant of a 2×2-matrix is given by the following formula.

Definition 7.1: Determinant of a 2×2-matrix

Let A =

[
a b

c d

]
. Then

det(A) = ad−bc.

Example 7.2: A 2×2 determinant

Find det(A) for the matrix A =

[
2 4

−1 6

]
.

Solution. We have det(A) = 2 ·6−4 · (−1) = 12+4 = 16. ♠

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

[
a b

c d

]
=

∣∣∣∣
a b

c d

∣∣∣∣= ad−bc.

Definition 7.3: Determinant of a 3×3-matrix

Let A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


. Then

det(A) = a11a22a33 +a12a23a31 +a13a21a32−a31a22a13−a32a23a11−a33a21a12.

241
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The following picture may help in memorizing the formula:

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32







Here, we have written down the matrix A, then repeated the first two columns next to it. The blue lines

correspond to the positive terms of the determinant: a11a22a33, a12a23a31, and a13a21a32. The pink lines

correspond to the negative terms: a31a22a13, a32a23a11, and a33a21a12.

Example 7.4: A 3×3 determinant

Find det(A), where

A =




0 1 2

3 1 0

1 1 −1


 .

Solution. We have

det(A) =

∣∣∣∣∣∣

0 1 2

3 1 0

1 1 −1

∣∣∣∣∣∣
= 0 ·1 · (−1)+1 ·0 ·1+2 ·3 ·1−1 ·1 ·2−1 ·0 ·0− (−1) ·3 ·1 = 7.

♠

Exercises

Exercise 7.1.1 Find the determinants of the following matrices.

(a)

[
1 3

0 2

]
(b)

[
0 3

0 2

]
(c)

[
4 3

6 2

]
(d)

[
−3 4

−1 2

]

Exercise 7.1.2 Find the following determinants.

(a)

∣∣∣∣∣∣

1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣

1 0 2

2 5 3

−1 0 0

∣∣∣∣∣∣
(c)

∣∣∣∣∣∣

3 4 1

0 −1 1

1 2 1

∣∣∣∣∣∣
(d)

∣∣∣∣∣∣

0 −2 1

4 1 −3

−1 3 1

∣∣∣∣∣∣
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7.2 Minors and cofactors

Outcomes

A. Compute minors and cofactors of matrices.

B. Use cofactor expansion to compute the determinant of an n×n-matrix.

Determinants of larger matrices can be computed in terms of the determinants of smaller matrices. We

begin with the following definition.

Definition 7.5: The ij th minor of a matrix

Let A be an n×n-matrix. The ij th minor of A, denoted by Mi j, is the determinant of the (n−1)×
(n−1)-matrix that is obtained by deleting the i th row and the j th column of A.

Hence, there is a minor associated with each entry of A. The following example illustrates this definition.

Example 7.6: Finding minors of a matrix

Let

A =




1 2 3

4 3 2

3 2 1




Find the minors M12 and M33.

Solution. First we will find M12. By definition, this is the determinant of the 2×2-matrix that results when

we delete the first row and the second column of A. This minor is given by

M12 =

∣∣∣∣∣∣

1 2 3

4 3 2

3 2 1

∣∣∣∣∣∣
=

∣∣∣∣
4 2

3 1

∣∣∣∣ = 4 ·1−2 ·3 = −2.

Similarly, M33 is the determinant of the 2×2-matrix that is obtained by deleting the third row and the third

column of A. This minor is therefore

M33 =

∣∣∣∣∣∣

1 2 3

4 3 2

3 2 1

∣∣∣∣∣∣
=

∣∣∣∣
1 2

4 3

∣∣∣∣ = −5.

♠

We now define the ij th cofactor of a matrix A, which is either plus or minus the ij th minor.
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Definition 7.7: The ij th cofactor of a matrix

Suppose A is an n×n-matrix. The ij th cofactor, denoted by Ci j, is defined to be

Ci j = (−1)i+ jMi j

In other words, the ij th cofactor is equal to the corresponding minor if i+ j is even, and the negative of the

minor if i+ j is odd. For remembering the signs, the following picture is sometimes helpful:



+ − + −
− + − +
+ − + −
− + − +


 .

Example 7.8: Finding cofactors of a matrix

Consider the matrix

A =




1 2 3

4 3 2

3 2 1




Find the cofactors C12 and C33.

Solution. We have already computed the corresponding minors in Example 7.6. For the cofactors, we

have:

C12 = (−1)1+2M12 = −M12 = − (−2) = 2,

C33 = (−1)3+3M33 = +M33 = +(−5) = −5.

Note that 1+2 is odd, so C12 =−M12. On the other hand, 3+3 is even, so C33 = M33. ♠

You may wish to find the remaining cofactors of the above matrix. Remember that there is a cofactor for

every entry in the matrix.

We have now established the tools we need to find the determinant of an n×n-matrix.

Definition 7.9: The determinant of an n×n-matrix

Let A be an n× n-matrix. Then det(A) is calculated by picking a row (or column) and taking the

product of each entry in that row (column) with its cofactor and adding these products together.

This process is known as expanding along the i th row (or column).

In formulas, the process of expanding along the i th row is given as follows:

det(A) = ai1Ci1 +ai2Ci2 + . . .+ainCin.

Similarly, the process of expanding along the j th column is:

det(A) = a1 jC1 j +a2 jC2 j + . . .+an jCn j.
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When calculating the determinant, you can choose to expand any row or any column. Regardless of which

row or column you expand, you will always get the same number, which is the determinant of the matrix

A. This method of evaluating a determinant by expanding along a row or a column is also called cofactor

expansion or Laplace expansion.

Example 7.10: Finding a determinant by cofactor expansion

Find det(A) using the method of cofactor expansion, where

A =




1 2 3

4 3 2

3 2 1


 .

Solution. First, we will calculate det(A) by expanding along the first column. Using Definition 7.9, the

determinant is

det(A) = a11C11 +a21C21 +a31C31

= a11M11−a21M21 +a31M31

= 1

∣∣∣∣
3 2

2 1

∣∣∣∣−4

∣∣∣∣
2 3

2 1

∣∣∣∣+3

∣∣∣∣
2 3

3 2

∣∣∣∣

= 1(−1)−4(−4)+3(−5)

= 0.

As mentioned in Definition 7.9, we can choose to expand along any row or column. Let’s try now by

expanding along the second row. The calculation is as follows.

det(A) = −4

∣∣∣∣
2 3

2 1

∣∣∣∣+3

∣∣∣∣
1 3

3 1

∣∣∣∣−2

∣∣∣∣
1 2

3 2

∣∣∣∣ = −4(−4)+3(−8)−2(−4) = 0.

You can see that for both methods, we obtained det(A) = 0. ♠

You should try to compute the above determinant by expanding along other rows and columns. This is a

good way to check your work, because you should come up with the same number each time!

Theorem 7.11: The determinant is well-defined

Expanding an n× n-matrix along any row or column always gives the same answer, which is the

determinant.

Example 7.12: Determinant of a four by four matrix

Calculate

∣∣∣∣∣∣∣∣

1 2 3 0

2 4 2 3

0 3 0 5

3 0 3 2

∣∣∣∣∣∣∣∣
.
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Solution. Using the cofactor method, we can expand this determinant along any row or column. But notice

that the third row contains two zeros. This makes the cofactor expansion particularly convenient. So let us

expand along the third row. We have:

∣∣∣∣∣∣∣∣

1 2 3 0

2 4 2 3

0 3 0 5

3 0 3 2

∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣

2 3 0

4 2 3

0 3 2

∣∣∣∣∣∣
−3

∣∣∣∣∣∣

1 3 0

2 2 3

3 3 2

∣∣∣∣∣∣
+0

∣∣∣∣∣∣

1 2 0

2 4 3

3 0 2

∣∣∣∣∣∣
−5

∣∣∣∣∣∣

1 2 3

2 4 2

3 0 3

∣∣∣∣∣∣
.

Note that we only need to compute two of the 3×3 determinants, since the remaining two are multiplied

by 0. We can compute each 3×3 determinant using the method of Definition 7.3. We find:

∣∣∣∣∣∣∣∣

1 2 3 0

2 4 2 3

0 3 0 5

3 0 3 2

∣∣∣∣∣∣∣∣
=−3

∣∣∣∣∣∣

1 3 0

2 2 3

3 3 2

∣∣∣∣∣∣
−5

∣∣∣∣∣∣

1 2 3

2 4 2

3 0 3

∣∣∣∣∣∣
=−3 ·10−5 · (−24) = 90.

♠

We remark that the cofactor expansion is mainly useful for calculating determinants of small matrices, or

matrices containing many zeros. Indeed, imagine calculating the determinant of a 10×10-matrix by the

cofactor method. This requires calculating the determinants of ten 9×9-matrices, each of which requires

calculating the determinants of nine 8×8-matrices, each of which requires calculating the determinants of

eight 7×7-matrices, and so on. Calculating the determinant of a 10×10-matrix by the cofactor method

would therefore require 10 ·9 ·8 · . . . ·2 ·1 = 3628800 steps!

In the next few sections, we will explore some important properties and characteristics of the determi-

nant, including a much more efficient method of calculating determinants of large matrices.

Exercises

Exercise 7.2.1 Let A =




1 2 4

0 1 3

−2 5 1


. Find the following minors and cofactors:

(a) M11,

(b) M21,

(c) M32,

(d) C11,

(e) C21,

(f) C32.
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Exercise 7.2.2 Let A =




0 −1 3 1

1 0 2 2

2 3 −1 0

1 1 0 1


. Find M11, M21, M32, C11, C21, and C32.

Exercise 7.2.3 Compute the determinants of the following matrices using cofactor expansion along any

row or column.

(a)




1 2 0

3 −2 2

0 3 1




(b)




1 −2 2

3 0 0

4 3 1




(c)




1 2 −2 2

1 3 2 3

4 0 1 0

1 2 1 2




Exercise 7.2.4 Find the following determinant by expanding (a) along the first row and (b) along the

second column. ∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣

Exercise 7.2.5 Find the following determinant by expanding (a) along the first column and (b) along the

third row. ∣∣∣∣∣∣∣∣

2 3 1 1

4 3 1 2

1 1 0 1

3 2 1 2

∣∣∣∣∣∣∣∣

Exercise 7.2.6 Find the following determinant by expanding (a) along the second row and (b) along the

first column. ∣∣∣∣∣∣∣∣

1 2 −1 1

0 1 2 1

0 2 1 3

1 4 0 2

∣∣∣∣∣∣∣∣

Exercise 7.2.7 Compute the determinant by cofactor expansion. Pick the easiest row or column to use.
∣∣∣∣∣∣∣∣

1 0 0 1

2 1 1 0

0 0 0 2

2 1 3 1

∣∣∣∣∣∣∣∣
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7.3 The determinant of a triangular matrix

Outcomes

A. Calculate the determinant of an upper or lower triangular matrix.

There is a certain type of matrix for which finding the determinant is a very simple procedure: a triangular

matrix.

Definition 7.13: Triangular matrices

An square matrix A is upper triangular if ai j = 0 whenever i > j. In other words, a matrix is upper

triangular if the entries below the main diagonal are 0. Thus, an upper triangular matrix looks as

follows, where ∗ refers to any non-zero number:




∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · ∗ ∗
0 0 · · · 0 ∗




.

Similarly, a square matrix is lower triangular if all entries above the main diagonal are 0.

The following theorem provides a useful way to calculate the determinant of a triangular matrix.

Theorem 7.14: Determinant of a triangular matrix

Let A be an upper or lower triangular matrix. Then det(A) is equal to the product of the entries on

the main diagonal. Written as a formula, we have

det(A) = a11 a22 · · · ann.

Example 7.15: Determinant of a triangular matrix

Compute det(A), where

A =




1 2 3 16

0 2 6 −7

0 0 3 33

0 0 0 −1


 .

Solution. By Theorem 7.14, it suffices to take the product of the elements on the main diagonal. Thus

det(A) = 1 ·2 ·3 · (−1) = −6.
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♠

For comparison, let us compute the determinant without Theorem 7.14, i.e., by using cofactor expansion.

If we expand the determinant along the first column, we get:

det(A) = 1

∣∣∣∣∣∣

2 6 −7

0 3 33

0 0 −1

∣∣∣∣∣∣
−0

∣∣∣∣∣∣

2 3 16

0 3 33

0 0 −1

∣∣∣∣∣∣
+0

∣∣∣∣∣∣

2 3 16

2 6 −7

0 0 −1

∣∣∣∣∣∣
−0

∣∣∣∣∣∣

2 3 16

2 6 −7

0 3 33

∣∣∣∣∣∣
.

The only non-zero term in the expansion is

1

∣∣∣∣∣∣

2 6 −7

0 3 33

0 0 −1

∣∣∣∣∣∣
.

We can in turns expand this 3×3 determinant by the cofactor method along the first column:
∣∣∣∣∣∣

2 6 −7

0 3 33

0 0 −1

∣∣∣∣∣∣
= 2

∣∣∣∣
3 33

0 −1

∣∣∣∣−0

∣∣∣∣
6 −7

0 −1

∣∣∣∣+0

∣∣∣∣
6 −7

3 33

∣∣∣∣ .

Again, the only non-zero term is the first term. In summary,

det(A) =

∣∣∣∣∣∣∣∣

1 2 3 16

0 2 6 −7

0 0 3 33

0 0 0 −1

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣

2 6 −7

0 3 33

0 0 −1

∣∣∣∣∣∣
= 1 ·2

∣∣∣∣
3 33

0 −1

∣∣∣∣ = 1 ·2 ·3 · (−1) = −6.

Of course this is just the same as the product of the diagonal entries of A, which is the point of Theo-

rem 7.14.

Exercises

Exercise 7.3.1 Find the determinant of the following matrices.

(a) A =

[
1 −34

0 2

]

(b) B =




4 0 0

3 −2 0

14 1 5




(c) C =




2 3 15 0

0 4 1 7

0 0 −3 5

0 0 0 1



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7.4 Determinants and row operations

Outcomes

A. Determine the effect of a row operation on the determinant of a matrix.

B. Use row operations to calculate a determinant.

Recall that there are three kinds of elementary row operations on matrices:

1. Switch two rows.

2. Multiply a row by a non-zero number.

3. Add a multiple of one row to another row.

The following theorem examines the effect of these row operations on the determinant of a matrix.

Theorem 7.16: Effect of row operations on the determinant

Let A be an n×n-matrix.

1. If B is obtained from A by switching two rows, then

det(B) =−det(A).

2. If B is obtained from A by multiplying one row by a non-zero scalar k, then

det(B) = k det(A).

3. If B is obtained from A by adding a multiple of one row to another row, then

det(B) = det(A).

Notice that the second part of this theorem is true when we multiply one row of the matrix by k. If we

were to multiply two rows of A by k to obtain B, we would have det(B) = k2 det(A).

Example 7.17: Using row operations to calculate a determinant

Use row operations to calculate the following determinant:

∣∣∣∣∣∣

1 5 5

0 0 −3

0 2 7

∣∣∣∣∣∣
.
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Solution. If we switch the second and third rows, we obtain a triangular matrix, of which the determinant

is easy to compute. By Theorem 7.16, switching two rows negates the determinant. We therefore have:

∣∣∣∣∣∣

1 5 5

0 0 −3

0 2 7

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 5 5

0 2 7

0 0 −3

∣∣∣∣∣∣
= − (1 ·2 · (−3)) = 6.

♠

Example 7.18: Using row operations to calculate a determinant

Use row operations to calculate the following determinant:

∣∣∣∣∣∣

1 4 −2

1 8 1

2 4 −9

∣∣∣∣∣∣
.

Solution. We can use elementary row operations to reduce this matrix to triangular form:




1 4 −2

1 8 1

2 4 −9


 R2 ← R2−R1≃




1 4 −2

0 4 3

2 4 −9


 R3 ← R3−2R1≃




1 4 −2

0 4 3

0 −4 −5


 R3 ← R3+R2≃




1 4 −2

0 4 3

0 0 −2


 .

Each of the row operations is of the form “add a multiple of one row to another row”, and therefore does

not change the determinant. We therefore have:

∣∣∣∣∣∣

1 4 −2

1 8 1

2 4 −9

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 4 −2

0 4 3

2 4 −9

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 4 −2

0 4 3

0 −4 −5

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 4 −2

0 4 3

0 0 −2

∣∣∣∣∣∣
= 1 ·4 · (−2) =−8.

♠

In general, we can convert any square matrix to triangular form using elementary row operations. In fact,

it is always possible to do so using only elementary operations of the first and third kind (swap two rows

or add a multiple of one row to another). This gives us a very efficient way to compute determinants. If

the matrices are large, this method is much more efficient than the cofactor method.

Example 7.19: Using row operations to calculate a determinant

Use elementary row operations of the first and third kind to calculate the following determinant:

∣∣∣∣∣∣∣∣

0 2 1 4

2 2 −4 −1

1 1 −2 −1

1 3 2 5

∣∣∣∣∣∣∣∣
.
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Solution. We use elementary row operations to reduce the matrix to triangular form:



0 2 1 4

2 2 −4 −1

1 1 −2 −1

1 3 2 5




R1 ↔ R3≃




1 1 −2 −1

2 2 −4 −1

0 2 1 4

1 3 2 5




R2 ← R2−2R1≃




1 1 −2 −1

0 0 0 1

0 2 1 4

1 3 2 5




R4 ← R4−R1≃




1 1 −2 −1

0 0 0 1

0 2 1 4

0 2 4 6




R4 ← R4−R3≃




1 1 −2 −1

0 0 0 1

0 2 1 4

0 0 3 2




R2 ↔ R3≃




1 1 −2 −1

0 2 1 4

0 0 0 1

0 0 3 2




R3 ↔ R4≃




1 1 −2 −1

0 2 1 4

0 0 3 2

0 0 0 1




By Theorem 7.16, the determinant changes signs each time we swap two rows. The determinant is un-

changed when we add a multiple of one row to another. Therefore, we have
∣∣∣∣∣∣∣∣

0 2 1 4

2 2 −4 −1

1 1 −2 −1

1 3 2 5

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣

1 1 −2 −1

2 2 −4 −1

0 2 1 4

1 3 2 5

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣

1 1 −2 −1

0 0 0 1

0 2 1 4

1 3 2 5

∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣

1 1 −2 −1

0 0 0 1

0 2 1 4

0 2 4 6

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣

1 1 −2 −1

0 0 0 1

0 2 1 4

0 0 3 2

∣∣∣∣∣∣∣∣

= +

∣∣∣∣∣∣∣∣

1 1 −2 −1

0 2 1 4

0 0 0 1

0 0 3 2

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣

1 1 −2 −1

0 2 1 4

0 0 3 2

0 0 0 1

∣∣∣∣∣∣∣∣
= −6.

In practice, the last calculation could have been done in a single step. All we had to do is count the number

of swap operations we performed during the row operations. If there is an odd number of swap operations,

the sign of the determinant changes; otherwise, it stays the same. ♠

Exercises

Exercise 7.4.1 Use row operations to calculate the following determinants:

(a)

∣∣∣∣∣∣

1 2 1

2 3 2

−4 1 2

∣∣∣∣∣∣
, (b)

∣∣∣∣∣∣

2 1 3

2 4 2

1 4 −5

∣∣∣∣∣∣
, (c)

∣∣∣∣∣∣∣∣

1 2 1 2

3 1 −2 3

−1 0 3 1

2 3 2 −2

∣∣∣∣∣∣∣∣
, (d)

∣∣∣∣∣∣∣∣

1 4 1 2

3 2 −2 3

−1 0 3 3

2 1 2 −2

∣∣∣∣∣∣∣∣
.
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7.5 Properties of determinants

Outcomes

A. Use the determinant of a square matrix to decide whether the matrix is invertible.

B. From the determinants of two matrices, calculate the determinant of their product.

C. From the determinant of a matrix, calculate the determinant of its inverse.

D. From the determinant of a matrix, calculate the determinant of its transpose.

E. Calculate the determinant of kA, if the determinant of A is known.

F. Without calculation, find the determinant of a matrix containing a row or column of zeros, or

a matrix containing a row (or column) that is a scalar multiple of another row (or column).

G. Use algebraic properties to reason about determinants.

One reason that the determinant is such an important quantity is that it permits us to tell whether a square

matrix is invertible.

Theorem 7.20: Determinants and invertible matrices

Let A be an n×n-matrix. Then A is invertible if and only if det(A) 6= 0.

Proof. We know that every matrix A can be converted to echelon form by elementary row operations. We

also know from Theorem 7.16 that no elementary row operation changes whether the determinant is zero

or not. Let R be an echelon form of A. Because R is an echelon form, it is also an upper triangular matrix.

Case 1: A is invertible. In that case, the rank of R is n, and every diagonal entry of R is a pivot entry

(therefore non-zero). It follows that det(R) 6= 0, which implies det(A) 6= 0. Case 2: A is not invertible.

In that case, the triangular matrix R contains a row of zeros. It follows that det(R) = 0, and therefore

det(A) = 0. ♠

Example 7.21: Determinants and invertible matrices

Determine which of the following matrices are invertible by computing their determinants.

A =

[
3 6

2 4

]
, B =

[
2 3

5 1

]
, C =




1 2 −5

2 0 2

3 1 0


 .

Solution. We have det(A) = 3 ·4−2 ·6 = 0 and det(B) = 2 ·1−5 ·3 =−13. Therefore, B is invertible and

A is not invertible. A quick way to compute the determinant of C is to expand it along the third row. We
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have

det(C) = 3

∣∣∣∣
2 −5

0 2

∣∣∣∣−1

∣∣∣∣
1 −5

2 2

∣∣∣∣= 3 ·4−1 ·12 = 0.

Therefore, C is not invertible. ♠

As an application of Theorem 7.20, we note that the determinant of an n×n-matrix can be used to predict

whether a homogeneous system of equations has non-trivial solutions.

Corollary 7.22: Determinants and homogeneous systems

Let A be an n× n-matrix. Then the homogeneous system Av = 0 has non-trivial solutions if and

only if det(A) = 0.

Proof. We know from Theorem 1.35 that the homogeneous system has a non-trivial solution if and only if

rank(A)< n. This is the case if and only if A is not invertible, i.e., if and only if det(A) = 0. ♠

Another reason the determinant is important is that it compatible with matrix product.

Theorem 7.23: Determinant of a product

Let A and B be n×n-matrices. Then

det(AB) = det(A)det(B)

Proof. We first prove this in case A = E is an elementary matrix. Remember from Section 4.6 that ele-

mentary matrices correspond to elementary row operations.

1. If E is an elementary matrix for swapping two rows, then det(E) =−1. Also, by Theorem 7.16(1),

det(EB) =−det(B). Therefore det(EB) = det(E)det(B).

2. If E is an elementary matrix for multiplying a row by a non-zero scalar k, then det(E) = k. Also, by

Theorem 7.16(2), det(EB) = k det(B). Therefore det(EB) = det(E)det(B).

3. If E is an elementary matrix for adding a multiple of one row to another, then det(E) = 1. Also, by

Theorem 7.16(3), det(EB) = det(B). Therefore det(EB) = det(E)det(B).

Now consider the case where A is an arbitrary matrix. Case 1: A is invertible. Then by Theorem 4.61,

we can write A as a product of elementary matrices A = E1E2 · · ·Ek. By repeatedly using the formula

det(EB) = det(E)det(B) that we proved above, we have

det(AB) = det(E1E2 · · ·EkB) = det(E1)det(E2) · · ·det(Ek)det(B) = det(A)det(B).

Case 2: A is not invertible. Then AB is also not invertible (because if C were an inverse of AB, we

would have ABC = I, and therefore, BC would be an inverse of A). Therefore, by Theorem 7.20, we have

det(A) = 0 and det(AB) = 0. It follows that det(AB) = det(A)det(B). ♠
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Example 7.24: The determinant of a product

Compare det(AB) and det(A)det(B), where

A =

[
1 2

−3 2

]
and B =

[
3 2

4 1

]
.

Solution. We first compute AB:

AB =

[
1 2

−3 2

][
3 2

4 1

]
=

[
11 4

−1 −4

]
.

The three determinants are

det(AB) =

∣∣∣∣
11 4

−1 −4

∣∣∣∣=−40, det(A) =

∣∣∣∣
1 2

−3 2

∣∣∣∣= 8, and det(B) =

∣∣∣∣
3 2

4 1

∣∣∣∣=−5.

Therefore det(A)det(B) = 8 · (−5) =−40 = det(AB). ♠

The following proposition summarizes some properties of determinants we have discussed so far, as well

as additional properties.

Proposition 7.25: Properties of determinants

Let A,B be n×n-matrices. Then:

1. det(AB) = det(A)det(B).

2. det(I) = 1.

3. A is invertible if and only if det(A) 6= 0. Moreover, if this is the case, then

det(A−1) =
1

det(A)
.

4. det(kA) = kn det(A).

5. det(AT ) = det(A).

Proof. Property 1 is a restatement of Theorem 7.23. Property 2 follows from Theorem 7.14, because the

identity matrix is an upper triangular matrix. Property 3: The first part is Theorem 7.20. For the second

part, assume A is invertible. Then by properties 1 and 2, det(A)det(A−1) = det(AA−1) = det(I) = 1. The

claim follows by dividing both sides of the equation by det(A). Property 4 follows from Theorem 7.16(2),

because kA is obtained from A by multiplying all n rows by k. Each time we multiple one row by k, the

determinant is multiplied by k. Property 5 follows because expanding det(A) along columns amounts to

the same thing as expanding det(AT ) along rows. ♠

We end this section with a few useful ways of spotting matrices of determinant 0.
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Theorem 7.26: Special matrices with zero determinant

Let A be an n×n-matrix.

1. If A has a row consisting only of zeros, or a column consisting only of zeros, then det(A) = 0.

2. If A has a row that is a scalar multiple of another row, or a column that is a scalar multiple of

another column, then det(A) = 0.

Proof. The first property follows by cofactor expansion: simply expand the determinant along the row

or column that consists only of zeros. For the second property, assume that A has a row that is a scalar

multiple of another row. We can then perform an elementary row operation to create a row of zeros.

By Theorem 7.16(3), the determinant is unchanged, so that det(A) = 0. In the case that A has a column

that is a scalar multiple of another column, we apply the same reasoning to AT and use the fact that

det(A) = det(AT ). ♠

Exercises

Exercise 7.5.1 Let

A =

[
a b

c d

]
.

An operation is done to get from A to a matrix B. In each case, identify which operation was done and

explain how it will affect the value of the determinant.

(a)

B =

[
a c

b d

]

(b)

B =

[
c d

a b

]

(c)

B =

[
a b

a+ c b+d

]

(d)

B =

[
a b

2c 2d

]

(e)

B =

[
b a

d c

]



7.5. Properties of determinants 257

Exercise 7.5.2 Let A be an n×n-matrix and suppose there are n−1 rows such that the remaining row is

a linear combinations of these n−1 rows. Show det(A) = 0.

Exercise 7.5.3 Let A be an n×n-matrix. Show that if det(A) 6= 0 and Ax = 0, then x = 0.

Exercise 7.5.4 Using only Theorems 7.14 and 7.23, show that det(kA) = kn det(A) for an n×n-matrix A

and scalar k.

Exercise 7.5.5 Construct two random 2×2-matrices A and B and verify that det(A)det(B) = det(AB).

Exercise 7.5.6 Is it true that det(A+B) = det(A)+det(B)? If this is so, explain why. If it is not so, give

a counterexample.

Exercise 7.5.7 An n×n-matrix is called nilpotent if there exists some positive integer k such that Ak = 0.

If A is a nilpotent matrix, what are the possible values of det(A)?

Exercise 7.5.8 A square matrix is said to be orthogonal if AT A = I. Thus the inverse of an orthogonal

matrix is its transpose. What are the possible values of det(A) if A is an orthogonal matrix?

Exercise 7.5.9 Let A and B be two n×n-matrices. We say that A is similar to B, in symbols A∼ B, if there

exists an invertible matrix P such that A = P−1BP. Show that if A∼ B, then det(A) = det(B).

Exercise 7.5.10 Find the determinant of

A =




1 1 1

1 a a2

1 b b2


 .

For which values of a and b is this matrix invertible? Hint: after you compute the determinant, you can

factor out (a−1) and (b−1) from it.

Exercise 7.5.11 Assume A, B, and C are n×n-matrices and ABC is invertible. Use determinants to show

that each of A,B, and C is invertible.

Exercise 7.5.12 Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all elements

of the main diagonal are non-zero. Is it true that A−1 will also be upper triangular? Explain. Could the

same be concluded for lower triangular matrices?
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Exercise 7.5.13 Specify whether each statement is true or false. If true, provide a proof. If false, provide

a counterexample.

(a) If A is a 3× 3-matrix with determinant zero, then one column must be a multiple of some other

column.

(b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero.

(c) For two n×n-matrices A and B, det(A+B) = det(A)+det(B).

(d) For an n×n-matrix A, det(3A) = 3det(A).

(e) If A−1 exists, then det(A−1) = det(A)−1.

(f) If B is obtained by multiplying a single row of A by 4, then det(B) = 4det(A).

(g) For an n×n-matrix A, we have det(−A) = (−1)n det(A).

(h) If A is a real n×n-matrix, then det(AT A)≥ 0.

(i) If Ak = 0 for some positive integer k, then det(A) = 0.

(j) If Ax = 0 for some x 6= 0, then det(A) = 0.

7.6 Application: A formula for the inverse of a matrix

Outcomes

A. Find the cofactor matrix and the adjugate of a matrix.

B. Find the inverse of a matrix using the adjugate formula.

The determinant of a matrix also provides a way to find the inverse of a matrix. Recall the definition of

the inverse of a matrix from Definition 4.36. If A is an n×n-matrix, we say that A−1 is the inverse of A if

AA−1 = I and A−1A = I.

We now define a new matrix called the cofactor matrix of A. The cofactor matrix of A is the matrix

whose ij th entry is the ij th cofactor of A.
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Definition 7.27: The cofactor matrix

Let A be an n×n-matrix. Then the cofactor matrix of A, denoted cof(A), is defined by

cof(A) =
[
Ci j

]
=




C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...

Cn1 Cn2 · · · Cnn


 ,

where Ci j is the ij th cofactor of A.

We will use the cofactor matrix to create a formula for the inverse of A. First, we define the adjugate of

A, denoted adj(A), to be the transpose of the cofactor matrix:

adj(A) = cof(A)T .

The adjugate is also sometimes called the classical adjoint of A.

Example 7.28: Cofactor matrix and adjugate

Find the cofactor matrix and the adjugate of A, where

A =




1 2 3

3 0 1

1 2 1


 .

Solution. We first find cof(A). To do so, we need to compute the cofactors of A. We have:

C11 = +M11 =

∣∣∣∣∣∣

1 2 3

3 0 1

1 2 1

∣∣∣∣∣∣
=

∣∣∣∣
0 1

2 1

∣∣∣∣ = −2,

C12 = −M12 = −

∣∣∣∣∣∣

1 2 3

3 0 1

1 2 1

∣∣∣∣∣∣
= −

∣∣∣∣
3 1

1 1

∣∣∣∣ = −2,

C13 = +M13 =

∣∣∣∣∣∣

1 2 3

3 0 1

1 2 1

∣∣∣∣∣∣
=

∣∣∣∣
3 0

1 2

∣∣∣∣ = 6,

C21 = −M21 = −

∣∣∣∣∣∣

1 2 3

3 0 1

1 2 1

∣∣∣∣∣∣
= −

∣∣∣∣
2 3

2 1

∣∣∣∣ = 4,

and so on. Continuing in this way, we find the cofactor matrix

cof(A) =



−2 −2 6

4 −2 0

2 8 −6


 .
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Finally, the adjugate is the transpose of the cofactor matrix:

adj(A) = cof(A)T =



−2 4 2

−2 −2 8

6 0 −6


 .

♠

The following theorem provides a formula for A−1 using the determinant and the adjugate of A.

Theorem 7.29: Formula for the inverse

Let A be an n×n-matrix. Then

A adj(A) = adj(A)A = det(A) I.

Moreover, A is invertible if and only if det(A) 6= 0. In this case, we have:

A−1 =
1

det(A)
adj(A).

We call this the adjugate formula for the matrix inverse.

Proof. Recall that the (i, j)-entry of adj(A) is equal to C ji. Thus the (i, j)-entry of B = A adj(A) is:

Bi j = ai1 adj(A)1 j +ai2 adj(A)2 j + . . .+ain adj(A)n j

= ai1C j1 +ai2C j2 + . . .+ainC jn.

By the cofactor expansion theorem, we see that this expression for Bi j is equal to the determinant of the

matrix obtained from A by replacing its jth row by [ai1,ai2, . . .ain], i.e., by its ith row.

If i = j then this matrix is A itself and therefore Bii = det(A). If on the other hand i 6= j, then this

matrix has its ith row equal to its jth row, and therefore Bi j = 0 in this case. Thus we obtain:

A adj(A) = det(A)I.

By a similar argument (using columns instead of rows), we can verify that:

adj(A)A = det(A)I.

This proves the first part of the theorem. For the second part, assume that A is invertible. Then by

Theorem 7.20, det(A) 6= 0. Dividing the formula from the first part of the theorem by det(A), we obtain

A

(
1

det(A)
adj(A)

)
=

(
1

det(A)
adj(A)

)
A = I,

and therefore

A−1 =
1

det(A)
adj(A).

This completes the proof. ♠
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Example 7.30: Finding the inverse using a formula

Use the adjugate formula to find the inverse of the matrix

A =




1 2 3

3 0 1

1 2 1


 .

Solution. We must compute

A−1 =
1

det(A)
adj(A).

We will start by computing the determinant. We expand along the second row:

det(A) =

∣∣∣∣∣∣

1 2 3

3 0 1

1 2 1

∣∣∣∣∣∣
= −3

∣∣∣∣
2 3

2 1

∣∣∣∣−1

∣∣∣∣
1 2

1 2

∣∣∣∣ = −3(−4)−1(0) = 12.

We have already calculated the adjugate adj(A) in Example 7.28:

adj(A) =



−2 4 2

−2 −2 8

6 0 −6


 .

Therefore, the inverse of A is given by

A−1 =
1

det(A)
adj(A) =

1

12




−2 4 2

−2 −2 8

6 0 −6


 =




−1
6

1
3

1
6

−1
6 −1

6
2
3

1
2 0 −1

2


 .

Since it is very easy to make a mistake in this calculation, we double-check our answer by computing

A−1A:

A−1A =




−1
6

1
3

1
6

−1
6 −1

6
2
3

1
2 0 −1

2







1 2 3

3 0 1

1 2 1


 =




1 0 0

0 1 0

0 0 1


 = I.

♠

Example 7.31: Finding the inverse using a formula

Use the adjugate formula to find the inverse of the matrix

A =




0 2 1

−1 2 2

2 −2 −2


 .
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Solution. We start by calculating the determinant:

det(A) =

∣∣∣∣∣∣

0 2 1

−1 2 2

2 −2 −2

∣∣∣∣∣∣
= −2

∣∣∣∣
−1 2

2 −2

∣∣∣∣+1

∣∣∣∣
−1 2

2 −2

∣∣∣∣ = −2 · (−2)+1 · (−2) = 2.

Next, we compute the cofactor matrix:

cof(A) =




∣∣∣∣
2 2

−2 −2

∣∣∣∣ −
∣∣∣∣
−1 2

2 −2

∣∣∣∣
∣∣∣∣
−1 2

2 −2

∣∣∣∣

−
∣∣∣∣

2 1

−2 −2

∣∣∣∣
∣∣∣∣

0 1

2 −2

∣∣∣∣ −
∣∣∣∣

0 2

2 −2

∣∣∣∣
∣∣∣∣

2 1

2 2

∣∣∣∣ −
∣∣∣∣

0 1

−1 2

∣∣∣∣
∣∣∣∣

0 2

−1 2

∣∣∣∣




=




0 2 −2

2 −2 4

2 −1 2


 .

The adjugate is the transpose of the cofactor matrix:

adj(A) = cof(A)T =




0 2 2

2 −2 −1

−2 4 2


 .

We therefore have

A−1 =
1

det(A)
adj(A) =

1

2




0 2 2

2 −2 −1

−2 4 2


 =




0 1 1

1 −1 −1
2

−1 2 1


 .

Once again, we double-check our work by computing A−1A:

A−1A =




0 1 1

1 −1 −1
2

−1 2 1







0 2 1

−1 2 2

2 −2 −2


 =




1 0 0

0 1 0

0 0 1


 .

♠

It is always a good idea to double-check your work. At the end of the calculation, it is very easy to compute

A−1A and check whether it is equal to I. If they are not equal, be sure to go back and double-check each

step. One common mistake is to forget to take the transpose of the cofactor matrix, so be sure not to forget

this step.

In practice, it is usually much faster to compute the inverse by the method of Section 4.5.2, because

this only requires solving a single system of equations, rather than computing a large number of cofactors.

However, there are some situations where the adjugate formula is useful. One such situation is when the

matrix has complicated entries that are functions rather than numbers. The following example illustrates

this.
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Example 7.32: Inverse for non-constant matrix

Let

A(t) =




et 0 0

0 cos t sin t

0 −sin t cos t


 .

Show that A(t)−1 exists and find it.

Solution. First note that

det(A(t)) = et(cos2 t + sin2 t) = et 6= 0.

Therefore A(t)−1 exists for all values of the variable t. The cofactor matrix is

cof(A(t)) =




1 0 0

0 et cos t et sint

0 −et sint et cos t


 .

The adjugate is the transpose of the cofactor matrix, and therefore the inverse is

A(t)−1 =
1

det(A(t))
adj(A(t)) =

1

et




1 0 0

0 et cos t −et sin t

0 et sint et cos t


 =




e−t 0 0

0 cos t −sin t

0 sint cos t


 .

♠

Another situation where the adjugate formula is useful is the case of a 2×2-matrix. In this case both the

determinant and the adjugate are especially easy to compute. For a 2×2-matrix

A =

[
a b

c d

]
,

we have

det(A) = ad−bc

adj(A) =

[
d −b

−c a

]
.

Therefore, A is invertible if and only if ad−bc 6= 0, and in that case, the inverse is given by

A−1 =
1

ad−bc

[
d −b

−c a

]
. (7.1)

Example 7.33: Inverse of a 2×2-matrix

Find the inverse of

A =

[
7 5

2 2

]
.
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Solution. We use formula (7.1) to compute the inverse:

A−1 =
1

7 ·2−2 ·5


 2 −5

−2 7


 =




1
2 −5

4

−1
2

7
4


 .

♠

Exercises

Exercise 7.6.1 Find the cofactor matrix and the adjugate of each of the following matrices.

A =

[
1 0

3 2

]
, B =




1 0 1

−1 1 −2

2 −1 3


 , C =




1 1 3

2 3 1

1 −1 1


 .

Exercise 7.6.2 For each of the following matrices, determine whether it is invertible by checking whether

the determinant is non-zero. If the determinant is non-zero, use the adjugate formula to find the inverse.

A =




1 2 3

0 2 1

3 1 0


 , B =




1 2 0

0 2 1

3 1 1


 , C =




1 3 3

2 4 1

0 1 1


 , D =




1 2 3

0 2 1

2 6 7


 , E =




1 0 3

1 0 1

3 1 0


 .

Exercise 7.6.3 Determine whether each of the following matrices is invertible. If so, use the adjugate

formula to find the inverse. If the inverse does not exist, explain why.

A =

[
1 1

1 2

]
, B =




1 2 3

0 2 1

4 1 1


 , C =




1 2 1

2 3 0

0 1 2


 .

Exercise 7.6.4 Use the adjugate formula to find the inverse of the matrix

A =




3 0 3

−1 2 −3

−5 4 −3


 .

Exercise 7.6.5 Use the adjugate formula to find the inverse of the matrix

A =




1 1 0

3 1 2

2 −2 5


 .
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Exercise 7.6.6 Consider the matrix

A =




1 0 0

0 cos t −sin t

0 sint cos t


 .

Does there exist a value of t for which this matrix fails to be invertible? Explain.

Exercise 7.6.7 Consider the matrix

A =




1 t t2

0 1 2t

t 0 2


 .

Does there exist a value of t for which this matrix fails to be invertible? Explain.

Exercise 7.6.8 Consider the matrix

A =




et cosht sinht

et sinht cosh t

et cosht sinht


 .

Does there exist a value of t for which this matrix fails to be invertible? Explain.

Exercise 7.6.9 Consider the matrix

A =




et e−t cos t e−t sint

et −e−t cos t− e−t sint −e−t sin t + e−t cos t

et 2e−t sint −2e−t cos t


 .

Does there exist a value of t for which this matrix fails to be invertible? Explain.

Exercise 7.6.10 Use the adjugate formula to find the inverse of the matrix

A =




et 0 0

0 cos t sint

0 cos t− sint cos t + sin t


 .

Exercise 7.6.11 Find the inverse, if it exists, of the matrix

A =




et cos t sint

et −sint cos t

et −cos t −sin t


 .
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7.7 Application: Cramer’s rule

Outcomes

A. Use Cramer’s rule to solve a system of equations with invertible coefficient matrix.

Another application of determinants is Cramer’s rule for solving a system of equations. Recall that we

can represent a system of linear equations in the form Ax = b, where x is a vector of variables. Cramer’s

rule gives a formula for the solutions x in the special case that the coefficient matrix A is a square invertible

matrix. Note that Cramer’s rule does not apply if you have a system of equations in which there is a

different number of equations than variables (in other words, when A is not square), or when A is not

invertible.

Theorem 7.34: Cramer’s rule

Suppose A is an invertible n× n-matrix and we wish to solve the system Ax = b, where x =
[x1, . . . ,xn]. Then xi can be computed by the rule

xi =
det(Ai)

det(A)
,

where Ai is the matrix obtained by replacing the i th column of A with b.

Proof. Since A is invertible, the solution to the system Ax = b is given by x = A−1b. By Theorem 7.29,

we have

A−1 =
1

det(A)
adj(A),

and therefore

x =
1

det(A)
adj(A)b.

Let xi be the i th component of x and b j be the j th component of b. Recall that the ij th entry of adj(A) is

C ji, the ji th cofactor of A. By definition of matrix multiplication, we have

xi =
1

det(A)
(C1i b1 + . . .+Cni bn).

By the formula for the expansion of a determinant along a column, this is equal to

xi =
1

det(A)

∣∣∣∣∣∣∣

∗ · · · b1 · · · ∗
...

...
...

∗ · · · bn · · · ∗

∣∣∣∣∣∣∣
,

where the i th column of A is replaced with the column vector b. But this last formula is exactly Cramer’s

rule. ♠
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Example 7.35: Using Cramer’s rule

Use Cramer’s rule to solve the system of equations




1 2 1

3 2 1

1 4 1






x

y

z


=




3

5

6


 .

Solution. The matrices A1, A2, and A3 are obtained by respectively replacing the first, second, and third

column of A by b. We compute

det(A) =

∣∣∣∣∣∣

1 2 1

3 2 1

1 4 1

∣∣∣∣∣∣
= 4, det(A1) =

∣∣∣∣∣∣

3 2 1

5 2 1

6 4 1

∣∣∣∣∣∣
= 4

det(A2) =

∣∣∣∣∣∣

1 3 1

3 5 1

1 6 1

∣∣∣∣∣∣
= 6, det(A3) =

∣∣∣∣∣∣

1 2 3

3 2 5

1 4 6

∣∣∣∣∣∣
=−4.

Then by Cramer’s rule,

x =
det(A1)

det(A)
=

4

4
= 1, y =

det(A2)

det(A)
=

6

4
=

3

2
, and z =

det(A3)

det(A)
=
−4

4
=−1.

Thus, the solution is (x,y,z) = (1, 3
2 ,−1). ♠

Cramer’s rule is sometimes useful in situations where row operations would be difficult to do. One such

situation is when a system of equations involves functions rather than numbers, as in the following exam-

ple.

Example 7.36: Using Cramer’s rule for non-constant matrix

Solve the following system of equations for z.




1 0 0

0 et cos t et sint

0 −et sint et cos t






x

y

z


=




1

t

t2


 .

Solution. We are asked to find the value of z in the solution. By Cramer’s rule, we have

z =

∣∣∣∣∣∣

1 0 1

0 et cost t

0 −et sint t2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0

0 et cos t et sint

0 −et sint et cos t

∣∣∣∣∣∣

=
et(t2 cos t− t sint)

e2t
= e−t(t2 cos t− t sint).

♠
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Exercises

Exercise 7.7.1 True or false? “Cramer’s rule is useful for finding solutions to systems of linear equations

in which there is an infinite set of solutions.”

Exercise 7.7.2 Use Cramer’s rule to find the solution to

x+2y = 1

2x− y = 2

Exercise 7.7.3 Use Cramer’s rule to find the solution to

x+2y+ z = 3

2x− y− z = 1

x+ z = 1

Exercise 7.7.4 Use Cramer’s rule to solve the system of equations




2 1 1

2 2 −1

2 1 2






x

y

z


=




3

−2

5


 .

Exercise 7.7.5 Find the value of y in the following system of equations:




1 1 1

1 t t2

1 s s2






x

y

z


=




t

s

1


 .



8. Eigenvalues, eigenvectors, and diagonalization

In this chapter, we introduce the theory of eigenvalues and eigenvectors, and the technique of diagonal-

ization. In the same way that Gaussian elimination is a fundamental tool that permits us to solve many

different kinds of problems, diagonalization is also one of the fundamentals tool of linear algebra. It has a

great number of applications in every field of mathematics, science, and engineering.

8.1 Eigenvectors and eigenvalues

Outcomes

A. Determine whether a vector is an eigenvector of a matrix.

B. Given an eigenvector, find the corresponding eigenvalue.

C. Given an eigenvalue, find the corresponding eigenvectors.

D. Find a basis for the eigenspace of a given eigenvalue.

When we multiply a square matrix A by a non-zero vector v, we obtain another vector Av. Most of the

time, the vectors Av and v are unrelated; they could point in completely different directions. However,

sometimes it can happen that Av is a scalar multiple of v. In that case, v is called an eigenvector of A. We

will see later in this chapter that we can learn a lot about the matrix A by considering its eigenvectors.

Definition 8.1: Eigenvalues and eigenvectors

Let A be an n×n-matrix. Suppose that v ∈ Rn is a non-zero vector such that Av is a scalar multiple

of v. In other words, suppose that there exists a scalar λ such that

Av = λv.

Then v is called an eigenvector of A, and λ is called the corresponding eigenvalue.

269
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Example 8.2: Eigenvalues and eigenvectors

Consider the matrix

A =




3 −2 2

1 2 1

0 2 1


 .

Which of the following vectors are eigenvectors of A? Find the corresponding eigenvalues.

v1 =




2

−1

−2


 , v2 =




0

1

1


 , v3 =




1

1

1


 , v4 =




0

0

0


 .

Solution. We compute

Av1 =




4

−2

−4


 , Av2 =




0

3

3


 , Av3 =




3

4

3


 , Av4 =




0

0

0


 .

• We see that Av1 is a scalar multiple of v1, namely Av1 = 2v1. Therefore, v1 is an eigenvector of A

with corresponding eigenvalue λ = 2.

• Similarly, Av2 = 3v2, so v2 is an eigenvector of A with corresponding eigenvalue λ = 3.

• On the other hand, Av3 is not a scalar multiple of v3. Hence, v3 is not an eigenvector of A.

• Finally, although Av4 is a scalar multiple of v4, the zero vector is not considered an eigenvector.

♠

Example 8.3: Find eigenvectors for the given eigenvalue

Let

A =




2 0 0

−1 3 1

2 −2 0


 .

Find the eigenvectors corresponding to the eigenvalue λ = 2.

Solution. We have to solve the equation Av = 2v. We can use algebra to rewrite this as

Av = 2v ⇐⇒ Av−2v = 0

⇐⇒ (A−2I)v = 0

⇐⇒




0 0 0

−1 1 1

2 −2 −2


v =




0

0

0


 .

This is a homogeneous system of equations with general solution

v = s




1

1

0


+ t




1

0

1


 ,
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where s and t are parameters. These (except the zero vector) are exactly the eigenvectors corresponding to

the eigenvalue λ = 2. ♠
As the last example shows, the eigenvectors for a given eigenvalue λ , plus the zero vector, form a subspace

of Rn. This is called the eigenspace of λ .

Definition 8.4: Eigenspace

Let A be an n×n-matrix, and let λ be an eigenvalue of A. The eigenspace of λ is the set

Eλ = {v | Av = λv} .

It is a subspace of Rn.

Instead of finding all eigenvectors for a given eigenvalue, it is often sufficient to find a basis for the

eigenspace. We also sometimes call the basis vectors of the eigenspace basic eigenvectors.

Example 8.5: Basis of eigenspace

Let

A =




2 0 0

−1 3 1

2 −2 0


 .

The matrix A has eigenvalues λ = 1 and λ = 2. Find a basis for each eigenspace.

Solution. We already found a basis for the eigenspace E2 in Example 8.3.

Basis of E2:








1

1

0


 ,




1

0

1





 .

To find a basis for the eigenspace E1, we proceed analogously. We must solve the equation Av = 1v. We

have:

Av = 1v ⇐⇒ Av−v = 0

⇐⇒ (A− I)v = 0

⇐⇒




1 0 0

−1 2 1

2 −2 −1


v =




0

0

0


 .

This is a homogeneous system of rank 2, with general solution

v = t




0

−1

2


 .

Thus, the following is a basis for the eigenspace E1:

Basis of E1:








0

−1

2





 .
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♠

Exercises

Exercise 8.1.1 Consider the matrix

A =




1 −2 −2

2 −3 −2

−2 2 1


 .

Which of the following vectors are eigenvectors of A? Find the corresponding eigenvalues.

v1 =




1

1

−1


 , v2 =




1

1

0


 , v3 =




2

2

−1


 , v4 =




0

−1

1


 .

Exercise 8.1.2 Let

A =




1 0 0

−5 −1 5

−3 0 4


 .

Find the eigenvectors corresponding to the eigenvalue λ = 4.

Exercise 8.1.3 Let

A =




7 −4 8

−1 4 −2

−2 2 −1


 .

Find the eigenvectors corresponding to the eigenvalue λ = 3.

Exercise 8.1.4 Let

A =




4 0 3

−3 1 −3

0 0 1


 .

This matrix has eigenvalues λ = 1 and λ = 4. Find a basis for each eigenspace.

Exercise 8.1.5 Let

A =




2 4 −4

−1 6 −9

0 0 −3


 .

This matrix has eigenvalues λ =−3 and λ = 4. Find a basis for each eigenspace.
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Exercise 8.1.6 Suppose A is a 3×3-matrix with eigenvalues λ1 = 1, λ2 = 0, and λ3 = 2 and corresponding

eigenvectors

v1 =



−1

−2

−2


 , v2 =




1

1

1


 , and v3 =



−1

−4

−3


 .

(By “corresponding”, we mean that v1 corresponds to λ1, v2 corresponds to λ2, and so on). Find

A




3

−4

3


 .

Exercise 8.1.7 Let A be an n× n-matrix, and assume λ is an eigenvalue of A. Show that λ 2 is an

eigenvalue of A2.

Exercise 8.1.8 Let A be an invertible n×n-matrix, and assume λ is an eigenvalue of A. Show that λ 6= 0

and that λ−1 is an eigenvalue of A−1.

Exercise 8.1.9 If A is an n×n-matrix and c is a non-zero constant, compare the eigenvalues of A and cA.

Exercise 8.1.10 Let A,B be invertible n×n-matrices which commute. That is, AB = BA. Suppose v is an

eigenvector of B. Show that then Av must also be an eigenvector for B.

Exercise 8.1.11 Suppose A is an n×n-matrix and it satisfies Am = A for some m a positive integer larger

than 1. Show that if λ is an eigenvalue of A then λ equals either 0, 1, or −1.

Exercise 8.1.12 Show that if Av = λv and Aw = λw, then whenever k, p are scalars,

A(kv+ pw) = λ (kv+ pw)

Does this imply that kv+ pw is an eigenvector? Explain.

8.2 Finding eigenvalues

Outcomes

A. Find the characteristic polynomial, eigenvalues, and eigenvectors of a matrix.

B. Find the eigenvalues of a triangular matrix.

In the previous section, we saw how to find the eigenvectors corresponding to a given eigenvalue λ , if

λ is already known. But we have not yet seen how to find the eigenvalues of a matrix. However, the

calculations in Examples 8.3 and 8.5 suggest a way forward. We can see that the following are equivalent:
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1. λ is an eigenvalue of A.

2. There exists a non-zero vector v such that Av = λv.

3. The homogeneous system of equations (A−λ I)v = 0 has a non-trivial solution.

Indeed, the equivalence between 1 and 2 is just the definition of an eigenvalue, and the equivalence between

2 and 3 is just algebra. By Corollary 7.22, we know that the system (A−λ I)v= 0 has a non-trivial solution

if and only if det(A−λ I) = 0. Therefore, we have proved the following theorem:

Theorem 8.6: Eigenvalues

Let A be a square matrix, and let λ be a scalar. Then λ is an eigenvalue of A if and only if

det(A−λ I) = 0.

Example 8.7: Finding the eigenvalues

Find the eigenvalues of the matrix

A =

[
−5 2

−7 4

]
.

Solution. By Theorem 8.6, a scalar λ is an eigenvalue of A if and only if det(A−λ I) = 0. We calculate

the determinant:

det(A−λ I) =

∣∣∣∣
−5−λ 2

−7 4−λ

∣∣∣∣
= (−5−λ )(4−λ )+14

= λ 2 +λ −6.

Therefore, λ is an eigenvalue if and only if λ 2 +λ −6 = 0. We can find the roots of this equation using

the quadratic formula, or equivalently, by factoring the left-hand side:

λ 2 +λ −6 = 0 ⇐⇒ (λ +3)(λ −2) = 0.

Therefore, the eigenvalues are λ =−3 and λ = 2. ♠

Example 8.8: Finding the eigenvalues

Find the eigenvalues of the matrix

A =




5 −4 4

2 −1 2

0 0 2


 .
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Solution. Once again, we calculate det(A−λ I):

det(A−λ I) =

∣∣∣∣∣∣

5−λ −4 4

2 −1−λ 2

0 0 2−λ

∣∣∣∣∣∣
= (5−λ )(−1−λ )(2−λ )−2(−4)(2−λ )

= −λ 3 +6λ 2−11λ +6

= (3−λ )(1−λ )(2−λ ).

The eigenvalues are the roots of this polynomial, i.e., the solutions of the equation (λ−3)(λ−1)(2−λ )=
0. Therefore, the eigenvalues of A are λ = 1, λ = 2, and λ = 3. ♠

Example 8.9: No real eigenvalue

Find the eigenvalues of the matrix

A =

[
0 −1

1 0

]
.

Solution. We have

det(A−λ I) =

∣∣∣∣
−λ −1

1 −λ

∣∣∣∣ = λ 2 +1.

Since λ 2 + 1 = 0 does not have any solutions in the real numbers, the matrix A has no real eigenvalues.

(However, if we were working over the field of complex numbers rather than real numbers, this matrix

would have eigenvalues λ =±i). ♠
As the examples show, the quantity det(A−λ I) is always a polynomial in the variable λ . A polynomial

is an expression of the form

p(λ ) = anλ n +an−1λ n−1 + . . .+a1λ +a0,

where a0, . . . ,an are constants called the coefficients of the polynomial. The polynomial det(A−λ I) has

a special name:

Definition 8.10: Characteristic polynomial

Let A be a square matrix. The expression

p(λ ) = det(A−λ I)

is called the characteristic polynomial of A.

Example 8.11: Characteristic polynomial

Find the characteristic polynomial of the matrix

A =




3 0 2

6 4 3

−4 0 −3


 .
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Solution. The characteristic polynomial is

det(A−λ I) =

∣∣∣∣∣∣

3−λ 0 2

6 4−λ 3

−4 0 −3−λ

∣∣∣∣∣∣

= (3−λ )

∣∣∣∣
4−λ 3

0 −3−λ

∣∣∣∣+2

∣∣∣∣
6 4−λ
−4 0

∣∣∣∣
= (3−λ )(4−λ )(−3−λ )+8(4−λ )

= −λ 3 +4λ 2 +λ −4. ♠

It is time to summarize the method for finding the eigenvalues and eigenvectors of a matrix.

Procedure 8.12: Finding eigenvalues and eigenvectors

Let A be an n×n-matrix. To find the eigenvalues and eigenvectors of A:

1. Calculate the characteristic polynomial det(A−λ I).

2. The eigenvalues are the roots of the characteristic polynomial.

3. For each eigenvalue λ , find a basis for the eigenvectors by solving the homogeneous system

(A−λ I)v = 0.

To double-check your work, make sure that Av = λv for each eigenvalue λ and associated eigen-

vector v.

Example 8.13: Finding eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of the matrix

A =




3 0 2

6 4 3

−4 0 −3


 .

Solution. We already found the characteristic polynomial in Example 8.11. It is

p(λ ) = det(A−λ I) =−λ 3 +4λ 2 +λ −4.

Finding the roots of a cubic polynomial can be a bit tricky, but with some trial and error, we can find that

λ = 1 is a root. We can therefore factor out (λ −1):

p(λ ) = (λ −1)(−λ 2 +3λ +4).

Then we can use the quadratic formula to find the remaining two roots:

λ =
−3±

√
9+16

−2
,
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which yields the two roots λ =−1 and λ = 4. Therefore, we have

p(λ ) =−(λ −1)(λ +1)(λ −4),

and the eigenvalues of A are λ = 1, λ =−1, and λ = 4. We now find the eigenvectors for each eigenvalue.

• For λ = 1: We must solve (A− I)v = 0, i.e.,




2 0 2

6 3 3

−4 0 −4


v = 0.

The basic solution is

v1 =



−1

1

1


 .

• For λ =−1: We must solve (A+ I)v = 0, i.e.,




4 0 2

6 5 3

−4 0 −2


v = 0.

The basic solution is

v2 =



−1

0

2


 .

• For λ = 4: We must solve (A−4I)v = 0, i.e.,



−1 0 2

6 0 3

−4 0 −7


v = 0.

The basic solution is

v3 =




0

1

0


 .

♠

Example 8.14: A zero eigenvalue

Let

A =




2 2 −2

1 3 −1

−1 1 1


 .

Find the eigenvalues and eigenvectors of A.
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Solution. To find the eigenvalues of A, we first compute the characteristic polynomial.

det(A−λ I) =

∣∣∣∣∣∣

2−λ 2 −2

1 3−λ −1

−1 1 1−λ

∣∣∣∣∣∣
=−λ 3 +6λ 2−8λ .

You can verify that the roots of this polynomial are λ1 = 0, λ2 = 2, λ3 = 4. Notice that while eigenvectors

can never equal 0, it is possible to have an eigenvalue equal to 0. Now we will find the basic eigenvectors.

• For λ1 = 0: We must solve the equation (A−0I)v = 0. This equation becomes Av = 0. We write

the augmented matrix for this system and reduce to echelon form:




2 2 −2 0

1 3 −1 0

−1 1 1 0


≃ . . .≃




1 0 −1 0

0 1 0 0

0 0 0 0


 .

The basic solution is

v1 =




1

0

1


 .

• For λ2 = 2: We solve the equation (A−2I)v = 0:




0 2 −2 0

1 1 −1 0

−1 1 −1 0


≃ . . .≃




1 0 0 0

0 1 −1 0

0 0 0 0


 .

The basic solution is

v2 =




0

1

1


 .

• For λ3 = 4: We solve the equation (A−4I)v = 0:



−2 2 −2 0

1 −1 −1 0

−1 1 −3 0


≃ . . .≃




1 −1 0 0

0 0 1 0

0 0 0 0


 .

The basic solution is

v3 =




1

1

0


 .

Thus we have found the eigenvectors v1 for λ1, v2 for λ2, and v3 for λ3. We can double-check our answers

by checking the equation Av = λv in each case:

Av1 =




2 2 −2

1 3 −1

−1 1 1






1

0

1


=




0

0

0


= 0v1,
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Av2 =




2 2 −2

1 3 −1

−1 1 1






0

1

1


=




0

2

2


= 2v2,

Av3 =




2 2 −2

1 3 −1

−1 1 1






1

1

0


=




4

4

0


= 4v3.

Therefore, our eigenvectors and eigenvalues are correct. ♠

We conclude this section by considering the eigenvalues of a triangular matrix. Recall from Definition 7.13

that a matrix is upper triangular if all entries below the main diagonal are zero, and lower triangular if

all entries above the main diagonal are zero.

Example 8.15: Eigenvalues of a triangular matrix

Find the eigenvalues of

A =




1 2 4

0 4 7

0 0 6


 .

Solution. We calculate det(A−λ I) = 0 as follows:

det(A−λ I) = det




1−λ 2 4

0 4−λ 7

0 0 6−λ


= (1−λ )(4−λ )(6−λ ).

Solving the equation (1− λ )(4− λ )(6− λ ) = 0 results in the eigenvalues λ1 = 1, λ2 = 4, and λ3 = 6.

Thus the eigenvalues are the entries on the main diagonal of A. ♠

Clearly, the same is true for any (upper or lower) triangular matrix. We therefore have the following

proposition:

Proposition 8.16: Eigenvalues of a triangular matrix

Let A be an upper or lower triangular matrix. Then the eigenvalues of A are the entries on the main

diagonal.

Exercises

Exercise 8.2.1 Find the characteristic polynomial of the matrix

[
3 −2

1 0

]
.



280 Eigenvalues, eigenvectors, and diagonalization

Use the quadratic formula to find the eigenvalues.

Exercise 8.2.2 Find the characteristic polynomial, eigenvalues, and basic eigenvectors of the matrix

[
9 10

−5 −6

]
.

Exercise 8.2.3 Find the characteristic polynomial, eigenvalues, and basic eigenvectors of the matrix




0 3 −1

−2 4 −2

2 −3 3


 .

One eigenvalue is 1.

Exercise 8.2.4 Find the characteristic polynomial, eigenvalues, and basic eigenvectors of the matrix




3 0 −2

−2 1 2

0 0 1


 .

One eigenvalue is 3.

Exercise 8.2.5 Find the characteristic polynomial, eigenvalues, and basic eigenvectors of the matrix




9 2 8

2 −6 −2

−8 2 −5


 .

One eigenvalue is −3.

Exercise 8.2.6 Which of the following matrices have no real eigenvalue?

A =

[
1 1

1 −1

]
, B =

[
1 −1

1 1

]
, C =

[
0 1

1 0

]
.

Exercise 8.2.7 Find the eigenvalues and eigenvectors of the following triangular matrix:




3 2 2

0 1 −2

0 0 −1


 .

Exercise 8.2.8 Is it possible for a non-zero matrix to have only 0 as an eigenvalue?
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8.3 Geometric interpretation of eigenvectors

Outcomes

A. Visualize the effect of a linear transformation by considering its eigenvectors and eigenvalues.

Consider the matrix

A =

[
2 1

1 2

]
.

In Chapter 6, we saw that this matrix corresponds to a linear transformation T : R2 → R2 defined by

T (x) = Ax. We also saw how to visualize this linear transformation as a before-and-after picture. For this,

we considered the images of the first and second standard basis vectors:

T (e1) = Ae1 =

[
2

1

]
,

T (e2) = Ae2 =

[
1

2

]
.

Here is the before-and-after picture for this transformation:

e1

e2

T7−→
T (e1) =

[
2
1

]

T (e2) =
[

1
2

]

Although we can see from this picture that the letter “F” is being distorted somehow, it is perhaps not very

obvious what exactly this linear transformation does.

We can get a much better idea by computing the eigenvectors and eigenvalues of A. A short calculation

shows that the basic eigenvectors are

v1 =

[
1

1

]
and v2 =

[
−1

1

]
,

with corresponding eigenvalues λ1 = 3 and λ2 = 1. Consider the effect of the linear transformation T on

the eigenvectors:

T (v1) =

[
2 1

1 2

][
1

1

]
=

[
3

3

]
= 3v1,
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T (v2) =

[
2 1

1 2

][
−1

1

]
=

[
−1

1

]
= v2.

So each eigenvector is mapped to a scalar multiple of itself. This gives us a hint for how to draw a more

useful before-and-after picture. Rather than tracking the movement of the standard basis vectors e1 and

~e2, let us track the movement of the eigenvectors v1 and v2 instead:

v1v2

T7−→

T (v1) = 3v1

T (v2) = v2

Thus, the linear transformation described by the matrix A is revealed to be just a scaling by a factor of 3

along the direction of

v1 =

[
1

1

]
.

In summary, the geometric meaning of an eigenvector is that it is mapped to a multiple of itself. Thus,

when viewed from the point of view of its action on the eigenvectors, a linear transformation behaves like

a scaling of each eigenvector. We can say that each eigenvector describes a direction of scaling, and each

corresponding eigenvalue giving the corresponding (positive or negative) scaling factor.

Example 8.17: Visualize a linear transformation

Visualize the linear transformation T : R2→R2 that is described by the matrix

A =

[
0 1

1 0

]

by considering the eigenvectors and eigenvalues.

Solution. The characteristic polynomial is λ 2− 1, and so the eigenvalues are λ1 = 1 and λ2 = −1. By

solving each equation (A−λ I)v = 0, we find that the corresponding basic eigenvectors are

v1 =

[
1

1

]
and v2 =

[
−1

1

]

(check this!). We get the following before-and-after picture:
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v1v2

T7−→

T (v1) = v1

T (v2) =−v2

We see that this linear transformation is a reflection about the vector v1. ♠

Example 8.18: Visualize a linear transformation

Visualize the linear transformation T : R2→R2 that is described by the matrix

A =

[
−2 3

0 1

]

by considering the eigenvectors and eigenvalues.

Solution. The characteristic polynomial is (−2−λ )(1−λ ), and therefore, the eigenvalues are λ1 = −2

and λ2 = 1. We find that the corresponding basic eigenvectors are

v1 =

[
1

0

]
and v2 =

[
1

1

]
,

respectively. We get the following before-and-after picture:

v1

v2

T7−→
T (v1) =−2v1

T (v2) = v2
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This particular linear transformation keeps the vector v2 fixed, while scaling by a factor of −2 in the

direction of v1. It could be described as a kind of slanted reflection with scaling. ♠

Exercises

Exercise 8.3.1 For each of the following matrices, find the eigenvectors and eigenvalues. Use this to

visualize the linear transformation T : R2→ R2 that is described by the matrix.

A =

[
1 2

2 1

]
, B =

[
1 0

2 −1

]
, C =

[
1 1

0 2

]
, D =

[
1 1

1 1

]
, E =

[
1 0

−1 2

]
.

Exercise 8.3.2 If A is the matrix of a linear transformation that rotates all vectors in R2 by 60◦, explain

why A cannot have any real eigenvalues. Is there an angle such that rotation by this angle would have a

real eigenvalue? What eigenvalues would be obtainable in this way?

Exercise 8.3.3 Let T be the linear transformation that reflects vectors about the x-axis. Find a matrix for

T and then find its eigenvalues and eigenvectors.

Exercise 8.3.4 Let T be the linear transformation that reflects vectors about the line x = y. Find a matrix

of T and then find eigenvalues and eigenvectors.

Exercise 8.3.5 Let T be the linear transformation that reflects all vectors in R3 about the xy-plane. Find

a matrix for T and then obtain its eigenvalues and eigenvectors.

8.4 Diagonalization

Outcomes

A. Compute sums, products, and powers of diagonal matrices.

B. Determine whether a square matrix is diagonalizable, and diagonalize it if possible.

A square matrix D is called a diagonal matrix if all entries except those on the main diagonal are zero.

Such matrices look like the following:



d11 0 · · · 0

0 d22 · · · 0
...

...
. . .

...

0 0 · · · dnn


 .
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Diagonal matrices are particularly easy to work with. For example, the sum of two diagonal matrices is

diagonal. Also, the product of two diagonal matrices is diagonal, and is computed by taking the product

of corresponding diagonal entries.

Example 8.19: Sums, products, and powers of diagonal matrices

Compute A+B, AB, and A4, where

A =




2 0 0

0 3 0

0 0 4


 and B =




1 0 0

0 −2 0

0 0 2


 .

Solution. We have

A+B =




2+1 0 0

0 3−2 0

0 0 4+2


=




3 0 0

0 1 0

0 0 6


 ,

AB =




2 ·1 0 0

0 3 · (−2) 0

0 0 4 ·2


=




2 0 0

0 −6 0

0 0 8


 ,

and

A4 =




24 0 0

0 34 0

0 0 44


=




16 0 0

0 81 0

0 0 256


 .

Notice that all operations are computed componentwise on the diagonal. Therefore, multiplication of

diagonal matrices is much simpler than multiplication of general matrices. ♠
One of the most important problem solving techniques in linear algebra is diagonalization. In a nutshell,

the point of diagonalization is to simplify a problem by replacing an arbitrary matrix by a diagonal matrix.

We say that two square matrices A and B are similar if there exists an invertible matrix P such that

P−1AP = B. A matrix is diagonalizable if it is similar to a diagonal matrix. This is summarized in the

following definition.

Definition 8.20: Diagonalizable matrix

Let A be an n×n-matrix. Then A is said to be diagonalizable if there exists an invertible matrix P

and a diagonal matrix D such that

P−1AP = D.

The key connection between diagonalizability, eigenvectors, and eigenvalues is the following theorem.

Theorem 8.21: Diagonalization and eigenvectors

An n×n-matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Moreover, in this case, let P be the invertible matrix whose columns are n linearly independent

eigenvectors of A, and let D be the diagonal matrix whose diagonal entries are the corresponding

eigenvalues. Then P−1AP = D.
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Proof. Assume that A has n linearly independent eigenvectors v1, . . . ,vn. Let λ1, . . . ,λn be the correspond-

ing eigenvalues, so that

Avi = λivi (8.1)

for all i = 1, . . . ,n. Let P be the matrix that has v1, . . . ,vn as its columns. Then P is invertible because

v1, . . . ,vn are linearly independent. Let D be the diagonal matrix that has λ1, . . . ,λn as its diagonal entries.

By the column method of matrix multiplication, the i th column of AP is Avi. Also by the column method

of matrix multiplication, the i th column of PD is λivi. Therefore, by (8.1), the matrices AP and PD have

the same columns, i.e.,

AP = PD.

It follows that P−1AP = D, as desired.

Conversely, assume that A is diagonalizable. Then there exists an invertible matrix P and a diagonal

matrix D such that P−1AP = D, or equivalently, AP = PD. Let v1, . . . ,vn be the columns of P and let

λ1, . . . ,λn be the diagonal entries of D. Again we find that the i th column of AP is Avi and the i th column

of PD is λivi, and therefore Avi = λivi holds for all i. It follows that v1, . . . ,vn are eigenvectors of A. Since

P is invertible, v1, . . . ,vn are linearly independent, so A has n linearly independent eigenvectors. ♠

Example 8.22: Diagonalizing a matrix

Diagonalize the matrix

A =




3 0 2

6 4 3

−4 0 −3


 .

In other words, find an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Solution. By Theorem 8.21, we use the eigenvectors of A as the columns of P and the corresponding eigen-

values as the diagonal entries of D. We already found the eigenvectors and -values of A in Example 8.13.

They were

v1 =



−1

1

1


 . v2 =



−1

0

2


 . and v3 =




0

1

0


 .

with corresponding eigenvalues λ1 = 1, λ2 =−1, and λ3 = 4. Therefore we can use

P =



−1 −1 0

1 0 1

1 2 0


 and D =




1 0 0

0 −1 0

0 0 4


 .

To double-check that P−1AP is indeed equal to D, we first compute the inverse of P:

P−1 =



−2 0 −1

1 0 1

2 1 1


 .

Then

P−1AP =



−2 0 −1

1 0 1

2 1 1






3 0 2

6 4 3

−4 0 −3





−1 −1 0

1 0 1

1 2 0


=




1 0 0

0 −1 0

0 0 4


= D.
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Alternatively, we could have checked that AP = PD, which would not have required computing P−1. ♠

Example 8.23: Diagonalizing a matrix

Diagonalize the matrix

A =




2 0 0

1 4 −1

−2 −4 4


 .

Solution. First, we will find the characteristic polynomial of A:

det(A−λ I) =

∣∣∣∣∣∣

2−λ 0 0

1 4−λ −1

−2 −4 4−λ

∣∣∣∣∣∣

= (2−λ )

∣∣∣∣
4−λ −1

−4 4−λ

∣∣∣∣
= (2−λ )((4−λ )(4−λ )−4)

= (2−λ )(12−8λ +λ 2)

= (2−λ )(2−λ )(6−λ ).

Therefore, the eigenvalues are λ = 2 and λ = 6. Next, we need to find the eigenvectors. We first find the

eigenvectors for λ = 2. We solve (A−2I)v = 0:



0 0 0 0

1 2 −1 0

−2 −4 2 0


≃




1 2 −1 0

0 0 0 0

0 0 0 0


 .

The general solution is

t



−2

1

0


+ s




1

0

1


 ,

where t,s are parameters. Thus, the basic eigenvectors for λ = 2 are

v1 =



−2

1

0


 and v2 =




1

0

1


 .

Doing a similar calculation, we find that the basic eigenvector for λ = 6 is

v3 =




0

1

−2


 .

By Theorem 8.21, we use the eigenvectors of A as the columns of P and the corresponding eigenvalues as

the diagonal entries of D. Therefore,

P =



−2 1 0

1 0 1

0 1 −2


 and D =




2 0 0

0 2 0

0 0 6


 .
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We can double-check this answer by computing

P−1AP =



−1

4
1
2

1
4

1
2 1 1

2
1
4

1
2 −1

4







2 0 0

1 4 −1

−2 −4 4






−2 1 0

1 0 1

0 1 −2


 =




2 0 0

0 2 0

0 0 6


 = D.

Notice that the eigenvalues on the main diagonal of D must be in the same order as the corresponding

eigenvectors in P. Since the eigenvectors v1 and v2 are both for the eigenvalue λ = 2, the entry 2 appears

twice in the matrix D. ♠

The following example shows that not all matrices are diagonalizable.

Example 8.24: A matrix that cannot be diagonalized

Show that the matrix A =

[
1 1

0 1

]
cannot be diagonalized.

Solution. Through the usual procedure, we find that the characteristic polynomial is (1−λ )2, and therefore

the only eigenvalue is λ = 1. To find the eigenvectors, we solve the equation (A− I)v = 0:
[

0 1 0

0 0 0

]
.

The general solution is

v = t

[
1

0

]
.

Because the solution space is 1-dimensional, there is only one basic eigenvector:

v1 =

[
1

0

]
.

Since the matrix A has only one basic eigenvector, we cannot find two linearly independent eigenvectors.

Therefore, by Theorem 8.21, A cannot be diagonalized. ♠

Exercises

Exercise 8.4.1 Let D =



−2 0 0

0 1 0

0 0 2


 and E =




1 0 0

0 −1 0

0 0 3


. Find D+E, DE, and D7.

Exercise 8.4.2 Find the eigenvalues and eigenvectors of the matrix


−13 −28 28

4 9 −8

−4 −8 9


 .
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One eigenvalue is 3. Diagonalize if possible.

Exercise 8.4.3 Find the eigenvalues and eigenvectors of the matrix




5 −18 −32

0 5 4

2 −5 −11


 .

One eigenvalue is 1. Diagonalize if possible.

Exercise 8.4.4 Find the eigenvalues and eigenvectors of the matrix




8 0 10

−6 −3 −6

−5 0 −7


 .

One eigenvalue is −3. Diagonalize if possible.

Exercise 8.4.5 Find the eigenvalues and eigenvectors of the matrix



−1 −2 2

0 5 −8

0 4 −7


 .

One eigenvalue is 1. Diagonalize if possible.

Exercise 8.4.6 Find the eigenvalues and eigenvectors of the matrix




2 −1 6

−4 −1 −6

−2 1 −6


 .

One eigenvalue is 0. Diagonalize if possible.

Exercise 8.4.7 Find the eigenvalues and eigenvectors of the matrix




3 −1 0

1 4 −1

−1 −1 4




One eigenvalue is 3. Diagonalize if possible.
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8.5 Application: Matrix powers

Outcomes

A. Use diagonalization to raise a matrix to a high power.

B. Use diagonalization to compute a square root of a matrix.

Suppose we have a matrix A and we want to find A50. One could try to multiply A with itself 50 times,

but this is a lot of work (try it!). However, diagonalization allows us to compute high powers of a matrix

relatively easily. Suppose A is diagonalizable, so that P−1AP = D. We can rearrange this equation to write

A = PDP−1. Now, consider A2. Since A = PDP−1, it follows that

A2 = (PDP−1)2 = PDP−1PDP−1 = PD2P−1.

Similarly,

A3 = (PDP−1)3 = PDP−1PDP−1PDP−1 = PD3P−1.

In general,

An = (PDP−1)n = PDnP−1.

Therefore, we have reduced the problem to finding Dn. But as we saw in Example 8.19, computing a

power of a diagonal matrix is easy. To compute Dn, we only need to raise every entry on the diagonal to

the power of n. Through this method, we can compute large powers of matrices.

Example 8.25: Raising a matrix to a high power

Let A =




2 1 0

0 1 0

−1 −1 1


. Find A50.

Solution. First, we will diagonalize A. Following the usual steps, we find that the eigenvalues are λ = 1

and λ = 2. The basic eigenvectors corresponding to λ = 1 are

v1 =




0

0

1


 and v2 =



−1

1

0


 ,

and the basic eigenvector corresponding to λ = 2 is

v3 =



−1

0

1


 .

Now we construct P by using the basic eigenvectors of A as the columns of P. Thus

P =




0 −1 −1

0 1 0

1 0 1


 .
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The inverse of P is

P−1 =




1 1 1

0 1 0

−1 −1 0


 .

Then

P−1AP =




1 1 1

0 1 0

−1 −1 0






2 1 0

0 1 0

−1 −1 1






0 −1 −1

0 1 0

1 0 1


 =




1 0 0

0 1 0

0 0 2


 = D.

Now it follows by rearranging the equation that A = PDP−1, and therefore, as noted above,

A50 = PD50P−1 =




0 −1 −1

0 1 0

1 0 1






150 0 0

0 150 0

0 0 250






1 1 1

0 1 0

−1 −1 0




=




250 −1+250 0

0 1 0

1−250 1−250 1


 .

♠

Thus, through diagonalization, we have efficiently computed a high power of A. The following example

shows that we can also use the same technique for finding a square root of a matrix.

Example 8.26: Square root of a matrix

Let A =




1 3 3

−1 5 3

1 −1 1


. Find a square root of A, i.e., find a matrix B such that A = B2.

Solution. We first diagonalize A. The characteristic polynomial is

∣∣∣∣∣∣

1−λ 3 3

−1 5−λ 3

1 −1 1−λ

∣∣∣∣∣∣
= (1−λ )(5−λ )(1−λ )+9+3−3(5−λ )+3(1−λ )+3(1−λ )

= −λ 3 +7λ 2−14λ +8,

with roots λ = 1, λ = 2, and λ = 4. The corresponding eigenvectors are

v1 =




1

1

−1


 , v2 =




0

1

−1


 , and v3 =




1

1

0


 ,

respectively. Therefore we have P−1AP = D, where

P =




1 0 1

1 1 1

−1 −1 0


 , P−1 =




1 −1 −1

−1 1 0

0 1 1


 , and D =




1 0 0

0 2 0

0 0 4


 .
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We can equivalently write A = PDP−1. Finding a square root of a diagonal matrix is easy:

D
1
2 =




1 0 0

0
√

2 0

0 0 2


 .

If we now define B = PD
1
2 P−1, we clearly have B2 = PD

1
2 P−1PD

1
2 P−1 = PDP−1 = A. So the desired

square root of A is

B = PD
1
2 P−1 =




1 0 1

1 1 1

−1 −1 0






1 0 0

0
√

2 0

0 0 2






1 −1 −1

−1 1 0

0 1 1


 =




1 1 1

1−
√

2 1+
√

2 1

−1+
√

2 1−
√

2 1


 .

Finally, we verify that we have computed B correctly by squaring it and double-checking that we really

get A.

B2 =




1 1 1

1−
√

2 1+
√

2 1

−1+
√

2 1−
√

2 1






1 1 1

1−
√

2 1+
√

2 1

−1+
√

2 1−
√

2 1


 =




1 3 3

−1 5 3

1 −1 1


 = A.

We note that the square root of a matrix is not unique. In fact, D has 8 different square roots, all of the

form 

±1 0 0

0 ±
√

2 0

0 0 ±2


 .

It follows that A has 8 different square roots as well. We leave it as an exercise to compute them all. ♠

The same method can also be used to compute other powers of a matrix, for example a cube root.

Exercises

Exercise 8.5.1 Let A =

[
1 2

2 1

]
. Find A10 by diagonalization.

Exercise 8.5.2 Let A =




1 4 1

0 2 5

0 0 5


. Find A50 by diagonalization.

Exercise 8.5.3 Let A =




1 −2 −1

2 −1 1

−2 3 1


. Find A100 by diagonalization.

Exercise 8.5.4 Let A =

[
−5 −6

9 10

]
. Find a square root of A, i.e., find a matrix B such that B2 = A.



8.6. Application: Solving recurrences 293

Exercise 8.5.5 Let A =



−2 0 6

−3 1 6

−3 0 7


. Find a square root of A.

8.6 Application: Solving recurrences

Outcomes

A. Solve a linear recurrence relation using diagonalization.

Consider the following sequence of integers, called the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The first two Fibonacci numbers are 0 and 1. Every subsequent Fibonacci number is the sum of the

previous two numbers. For example, 0+ 1 = 1, 1+ 1 = 2, 1+ 2 = 3, 2+ 3 = 5, and so on. Thus, if we

write Fn for the n th Fibonacci number, then the Fibonacci sequence is given by the following conditions:

F0 = 0,

F1 = 1,

Fn+2 = Fn +Fn+1, for all n≥ 0.

The condition Fn+2 =Fn+Fn+1 is known as a recurrence relation, or simply as a recurrence, because we

compute each member of the sequence from previous members (the word “recurrence” comes from Latin

“recurrere”, which means “to go back”). The conditions F0 = 0 and F1 = 1 are known as the base cases of

the recurrence. Note that we start counting from zero, i.e., we call F0 = 0 the “zeroth Fibonacci number”,

F1 = 1 the “first Fibonacci number”, and so on. Counting from zero will help simplify our calculations

later.

Example 8.27: Computing a Fibonacci number

Compute the 10 th Fibonacci number F10.

Solution. To compute the 10 th Fibonacci number using the recurrence, we have to compute all the previous

Fibonacci numbers as well.

F0 = 0,

F1 = 1,

F2 = F0 +F1 = 0+1 = 1,

F3 = F1 +F2 = 1+1 = 2,

F4 = F2 +F3 = 1+2 = 3,

F5 = F3 +F4 = 2+3 = 5,
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F6 = F4 +F5 = 3+5 = 8,

F7 = F5 +F6 = 5+8 = 13,

F8 = F6 +F7 = 8+13 = 21,

F9 = F7 +F8 = 13+21 = 34,

F10 = F8 +F9 = 21+34 = 55.

Thus, the 10 th Fibonacci number is 55. ♠

Suppose we want to compute the 100 th Fibonacci number. As the previous example shows, computing

this by using the recurrence relation would be lot of work. We will therefore explore how to use linear

algebra, and in particular diagonalization, to find a closed formula for the n th Fibonacci number. By a

closed formula, we mean a formula to calculate Fn directly in one step, i.e., without using a recurrence.

The process of finding a closed formula is called solving the recurrence.

The first step in solving the recurrence is to replace the recurrence relation Fn+2 = Fn +Fn+1, which

requires two previous terms of the sequence, by another recurrence relation requiring only one previous

term. To that end, we define vn to be the vector consisting of the n th and n+1st Fibonacci numbers, for

all n≥ 0:

vn =

[
Fn

Fn+1

]
.

Using the recurrence relation for Fn+2, we have

vn+1 =

[
Fn+1

Fn+2

]
=

[
Fn+1

Fn +Fn+1

]
=

[
0 1

1 1

][
Fn

Fn+1

]
=

[
0 1

1 1

]
vn.

Therefore, to compute vn+1, we only need to know vn (and not vn−1). Let

A =

[
0 1

1 1

]
.

Since vn is obtained from v0 by applying the matrix A n times, we have vn = An v0 for all n ≥ 0. We can

therefore get a formula for vn, and thus for Fn, by diagonalizing the matrix A.

Problem 8.28: Diagonalizing A

Diagonalize the matrix A =

[
0 1

1 1

]
.

Solution. The characteristic polynomial is

p(λ ) =

∣∣∣∣
−λ 1

1 1−λ

∣∣∣∣= (−λ )(1−λ )−1 = λ 2−λ −1.

The eigenvalues are the roots of the characteristic polynomial. We find them by using the quadratic

formula. The eigenvalues are

λ1 =
1+
√

5

2
and λ2 =

1−
√

5

2
.
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To simplify later calculations, we note that λ1 +λ2 = 1, or equivalently,

1−λ1 = λ2. (8.2)

We also note that λ1λ2 =−1, or equivalently,

λ2 =−
1

λ1
. (8.3)

To find the eigenvector corresponding to the eigenvalue λ1, we solve the equation

[
−λ1 1

1 1−λ1

]
u = 0.

By (8.2) and (8.3), this is equivalent to

[ −λ1 1

1 − 1
λ1

]
u = 0,

and we find the basic solution

u =

[
1

λ1

]
.

By a similar method, we find that the basic eigenvector corresponding to the eigenvalue λ2 is

w =

[
1

λ2

]
.

Therefore, by Theorem 8.21, A is diagonalizable, and we have P−1AP = D, where

P =

[
1 1

λ1 λ2

]
and D =

[
λ1 0

0 λ2

]
.

For later reference, we note that the inverse of P is given by

P−1 =
1√
5

[
−λ2 1

λ1 −1

]
.

♠

We are now ready to find our formula for the n th Fibonacci number.

Problem 8.29: Solving the recurrence

Find a formula for the n th Fibonacci number.

Solution. Since

vn =

[
Fn

Fn+1

]
,

we know that the n th Fibonacci number is the first component of vn, i.e.,

Fn =
[

1 0
]

vn.
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Putting together all of the above calculations, we then have:

Fn =
[

1 0
]

vn

=
[

1 0
]

An v0

=
[

1 0
]

PDnP−1 v0

=
[

1 0
][ 1 1

λ1 λ2

][
λ n

1 0

0 λ n
2

]
1√
5

[
−λ2 1

λ1 −1

][
0

1

]

=
1√
5

[
1 1

][ λ n
1 0

0 λ n
2

][
1

−1

]

=
1√
5
(λ n

1 −λ n
2 ).

So the n th Fibonacci number is

Fn =
1√
5
(λ n

1 −λ n
2 ) =

1√
5

((
1+
√

5

2

)n

−
(

1−
√

5

2

)n)
.

♠

Example 8.30: Computing the 100 th Fibonacci number

Calculate the 100 th Fibonacci number without using the recurrence.

Solution. Note that this calculation requires about 25 digits of precision to give the correct result. We have

F100 =
1√
5
(λ 100

1 −λ 100
2 )

=
1√
5
(1.6180339887498948482045868100− (−0.6180339887498948482045868)100)

= 354224848179261915075.

♠

We can use the same method to solve other linear recurrences. Here is another example:

Example 8.31: Solving a recurrence

Consider the sequence of numbers defined by the recurrence

b0 = 1,

b1 = 2,

bn+2 = 6bn +bn+1, for all n≥ 0.

Find the first 5 members of this sequence. Then solve the recurrence and find b20.
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Solution. The first 5 members of the sequence are:

b0 = 1,

b1 = 2,

b2 = 6b0 +b1 = 6+2 = 8,

b3 = 6b1 +b2 = 12+8 = 20,

b4 = 6b2 +b3 = 48+20 = 68.

To solve the recurrence, let

wn =

[
bn

bn+1

]
,

so that for all n≥ 0,

wn+1 =

[
bn+1

bn+2

]
=

[
bn+1

6bn +bn+1

]
=

[
0 1

6 1

][
bn

bn+1

]
=

[
0 1

6 1

]
wn.

We then diagonalize the matrix

B =

[
0 1

6 1

]
.

The characteristic polynomial is

p(λ ) = λ 2−λ −6,

with roots λ =−2 and λ = 3. The respective eigenvectors are

v =

[
1

−2

]
for the eigenvalue λ =−2,

u =

[
1

3

]
for the eigenvalue λ = 3.

Therefore, B = PDP−1, where

P =

[
1 1

−2 3

]
and D =

[
−2 0

0 3

]
.

The inverse of P is

P−1 =
1

5

[
3 −1

2 1

]
.

Finally, we use this information to solve the recurrence:

bn =
[

1 0
]

wn

=
[

1 0
]

Bn w0

=
[

1 0
]

PDnP−1 w0

=
[

1 0
][ 1 1

−2 3

][
(−2)n 0

0 3n

]
1

5

[
3 −1

2 1

][
1

2

]

=
1

5

[
1 1

][ (−2)n 0

0 3n

][
1

4

]

=
(−2)n +4 ·3n

5
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Finally, we calculate

b20 =
(−2)20 +4 ·320

5
=

1048576+4 ·3486784401

5
= 2789637236.

♠

Exercises

Exercise 8.6.1 Consider the sequence of numbers defined by the recurrence

a0 = 0,

a1 = 1,

an+2 = 2an+1 +3an, for all n≥ 0.

Find the first 5 members of this sequence. Then solve the recurrence and find a20.

Exercise 8.6.2 Consider the sequence of numbers defined by the recurrence

b0 = 1,

b1 = 2,

b2 = 3,

bn+3 = 2bn+2 +bn+1−2bn, for all n≥ 0.

Find the first 5 members of this sequence. Then solve the recurrence and find b20.

Exercise 8.6.3 Consider two sequences of numbers c0,c1,c2, . . . and d0,d1,d2, . . ., defined by the following

mutual recurrence relation.

c0 = 0, d0 = 1

cn+1 = 4cn−3dn, dn+1 = 2cn−dn, for all n≥ 0.

Find the first 5 members of both sequences. Then solve the recurrence. Hint: first find a matrix A such that

[
cn+1

dn+1

]
= A

[
cn

dn

]
.
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8.7 Application: Systems of linear differential equations

Outcomes

A. Solve a system of second order linear differential equations.

8.7.1. Differential equations

Recall from calculus that if y = f (x) is a function, then y′ = f ′(x) is its derivative and y′′ = f ′′(x) is its

second derivative. For example,
y = sin(x),
y′ = cos(x),
y′′ = −sin(x).

Note that if y = sin(x), the second derivative y′′ is exactly the negative of y, i.e.,

y′′ =−y.

This last equation is called a differential equation. Unlike an ordinary equation, which is about an

unknown number, a differential equation is about an unknown function. Typically, a differential equation

mentions the function and one or more of its derivatives. A differential equation that only mentions the

first derivative y′ is called a first-order differential equation. A differential equation that also mentions

the second derivative y′′ is called a second-order differential equation. If the equation is a linear function

of y and its derivatives, it is called a linear differential equation.

We say that the function y = sin(x) is a solution of the differential equation y′′ =−y. It is not the only

solution. Another solution is y = cos(x), because in that case, y′′ =−cos(x), and therefore y′′ =−y. From

calculus, we know that the general solution to the differential equation y′′ =−y is given by

y = asin(x)+bcos(x),

where a and b are any real numbers, i.e., parameters. Using the terminology of linear algebra, we can say

that the general solution of the equation y′′ =−y is a linear combination of the basic solutions y = sin(x)
and y = cos(x). More generally, we have the following theorem from calculus:

Theorem 8.32: Solutions of y′′ = qy

Let q be a positive real number. The differential equation

y′′ = −qy has basic solutions y = sin(
√

qx) and y = cos(
√

qx),
y′′ = 0 has basic solutions y = 1 and y = x,

y′′ = qy has basic solutions y = e
√

qx and y = e−
√

qx.

Proof. By taking derivatives, it is easy to check that each of the six functions is a solution of the cor-

responding differential equation. For example, for y = sin(
√

qx), we have y′ =
√

qcos(
√

qx) and y′′ =
−qsin(

√
qx). Therefore, y′′ =−qy.
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Note that we can obtain the general solution of each of the differential equations as a linear combination

of the basic solutions. Thus, the general solution of y′′ =−qy is

y = asin(
√

qx)+bcos(
√

qx),

the general solution of y′′ = 0 is

y = a+bx,

and the general solution of y′′ = qy is

y = ae
√

qx +be−
√

qx,

where a and b are parameters. The fact that each of these solutions is indeed the most general one is

proved in a calculus course. ♠

8.7.2. Systems of linear differential equations

In the same way that a system of linear equations consists of several linear equations about several vari-

ables, a system of differential equations consists of several differential equations about several unknown

functions and their derivatives. For example, the following is a system of second order linear differential

equations:
y′′ = 4y − 3z,

z′′ = 6y − 5z.

In reading these equations, it is important to understand that we are looking for two unknown functions

y = f (x) and z = g(x) such that their second derivatives satisfy both of the equations y′′ = 4y− 3z and

z′′ = 6y− 5z. The reason that this is in principle a difficult problem is that the equation for y′′ mentions

not only y, but also z, and the equation for z′′ mentions not only z, but also y. Therefore, it is not possible

to solve this system one function at a time. We say that the variables y and z are coupled.

The following example shows how we can use diagonalization to decouple the variables in a system

of differential equations. This makes it possible to solve the equations.

Example 8.33: A system of linear differential equations

Solve the following system of second order linear differential equations:

y′′ = 4y − 3z,

z′′ = 6y − 5z.

Solution. We start by writing the system in matrix form:
[

y′′

z′′

]
=

[
4 −3

6 −5

][
y

z

]
.

Let us write

v =

[
y

z

]
and A =

[
4 −3

6 −5

]
.

With these notations, the system of differential equations take the form

v′′ = Av. (8.4)
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Our next step is to diagonalize the matrix A. Following the usual diagonalization procedure, we find that

A = PDP−1, where

P =

[
1 1

1 2

]
and D =

[
1 0

0 −2

]
.

With this, our equation takes the form v′′ = PDP−1v, which we can also write as P−1v′′ = DP−1v. We

now introduce a change of variables. Let w = P−1v. Then our system of differential equations can be

written as

w′′ = Dw. (8.5)

Note that the equation (8.5) is of exactly the same form as the equation (8.4), but with the crucial difference

that the matrix in (8.5) is diagonal. Let us give a name to the components of w:

w =

[
u

v

]
.

Then the equation (8.5) can be written as

[
u′′

v′′

]
=

[
1 0

0 −2

][
u

v

]
,

or equivalently,
u′′ = u,

v′′ = −2v.

Note that the variables u and v are not coupled! This happened because the matrix D is diagonal. We can

therefore use Theorem 8.32 to solve the equations for u and for v separately. By Theorem 8.32, the general

solution for the equation u′′ = u is

u = aex +be−x,

and the general solution for the equation v′′ =−2v is

v = csin(
√

2x)+d cos(
√

2x).

Here, a, b, c, and d are parameters. Therefore, the general solution for (8.5) is

w=

[
u

v

]
=

[
aex +be−x

csin(
√

2x)+d cos(
√

2x)

]
= a

[
ex

0

]
+b

[
e−x

0

]
+c

[
0

sin(
√

2x)

]
+d

[
0

cos(
√

2x)

]
.

We have therefore found the four basic solution of (8.5). But what about our original equation (8.4)? We

can undo our change of variables. Since w = P−1v, we have v = Pw. Therefore, the general solution to

our original system of differential equations is

v = Pw = aP

[
ex

0

]
+bP

[
e−x

0

]
+ cP

[
0

sin(
√

2x)

]
+d P

[
0

cos(
√

2x)

]

= aex

[
1

1

]
+be−x

[
1

1

]
+ c sin(

√
2x)

[
1

2

]
+d cos(

√
2x)

[
1

2

]
.

♠
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8.7.3. Example: coupled train cars

One of the reasons that differential equations are important is that the laws of nature often take the form

of differential equations. For example, Newton’s second law of motion asserts that the acceleration of an

object is equal to the total force on the object divided by the mass of the object. In physics, it is common

to use t instead of x for the independent variable, and x instead of y for the dependent variable, so that we

write x = f (t) instead of y = f (x). If x is the position of the object at time t, then the object’s acceleration

is x′′, and Newton’s second law takes the form

x′′ =
F

m
.

This is a differential equation. In the following example, we will need another law of physics, namely

Hooke’s law about the force exerted by a spring. A spring is an object made from an elastic material

(often in the shape of a coil), which returns to its original shape after being stretched or compressed.

Hooke’s law states that the force exerted by a spring to both of its ends is equal to

F = kx.

Here x is the extension of the spring, i.e., the change in length of the spring, relative to its relaxed (natural)

length. Also, k is a constant called the spring constant, measured in units of N
m (Newtons per meter). Of

course the direction of the force on one end of the spring is the opposite of the direction on the other

end. Hooke’s law is not a differential equation, because it does not mention any derivatives. It is just an

ordinary equation. Nevertheless, both the force F and the extension x can vary with time, i.e., they can

both be functions of t.

Example 8.34: Coupled train cars

Consider a train made up of three cars of mass 1kg, 2kg, and 1kg, which are aligned on a linear

track and connected by springs. Assume that each spring has the same spring constant k = 2 N
m .

1kg
2kg

1kg

k k

Find and solve the equations of motion of this system.

Solution. Let us start by defining appropriate coordinates. Let x be the position of the first car, y the

position of the second car, and z the position of the third car, measured in meters from left to right, relative

to each car’s natural resting position. The x-, y-, and z-axes are shown in the following picture. All three

axes are parallel to the train tracks, but they have their origins in different places. The coordinates are

chosen so that when x = 0, y = 0, and z = 0, then all three cars are at rest and both springs are in their
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natural relaxed state.

x-axis

x = 0

y-axis

y = 0

z-axis

z = 0

Then the extension of the left spring is y− x, and therefore the left spring’s contracting force is

F1 = k(y− x).

Similarly, the extension of the right spring is z− y, and therefore its contracting force is

F2 = k(z− y).

The total force acting on the left car is F1, the total force acting on the middle car is F2−F1, and the total

force acting on the right car is −F2. By Newton’s second law, the acceleration of each car is given by

x′′ = F1
m1

, y′′ = F2−F1
m2

, and z′′ = −F2
m3

. We therefore have the following equations of motion:

x′′ =
k

m1
(y− x),

y′′ =
k

m2
(x−2y+ z),

z′′ =
k

m3
(z− y).

Let us ignore the physical units and plug in the masses m1 = 1, m2 = 2, and m3 = 1 and the spring constant

k = 2. Then the equations of motion are:

x′′ = 2(y− x),

y′′ = x−2y+ z,

z′′ = 2(z− y),

or equivalently in matrix form:



x′′

y′′

z′′


=



−2 2 0

1 −2 1

0 2 −2






x

y

z


 .

We can also write this as v′′ = Av, where

v =




x

y

z


 and A =



−2 2 0

1 −2 1

0 2 −2


 .

To solve the equation, we diagonalize the matrix A. Using the usual method for diagonalization, we find

that A = PDP−1, where

P =



−1 1 1

0 −1 1

1 1 1


 and D =



−2 0 0

0 −4 0

0 0 0


 .
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The equation v′′ = Av then becomes v′′ = PDP−1v, or equivalently P−1v′′ = DP−1v. We then diagonalize

the equation by performing the change of variables w = P−1v. The equation becomes

w′′ = Dw.

If the components of w are called u, v, and w, we can write this as




u′′

v′′

w′′


=



−2 0 0

0 −4 0

0 0 0






u

v

w


 ,

or equivalently,
u′′ = −2u,

v′′ = −4v,

w′′ = 0.

Since the variables are now decoupled, we can solve each differential equation individually.

• Solutions for λ =−2: By Theorem 8.32, the basic solutions for u′′ =−2u are

u = sin(
√

2 t) and u = cos(
√

2 t).

This translates into the following basic solutions for w:

w = sin(
√

2 t)




1

0

0


 and w = cos(

√
2 t)




1

0

0


 .

Using v = Pw to change to the original variables, we get the basic solutions

v = sin(
√

2 t)



−1

0

1


 and v = cos(

√
2 t)



−1

0

1


 .

For example, the first of these basic solutions, written in the coordinates x, y, and z, gives

x = −sin(
√

2 t),
y = 0,

z = sin(
√

2t).

This corresponds to a periodic oscillation of the train where the middle car is stationary, and the left

car moves left when the right car moves right. Each oscillation takes 2π/
√

2≈ 4.4 seconds. Here is
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a “movie” showing one oscillation:

t = 0s

t = 1.1s

t = 2.2s

t = 3.3s

t = 4.4s

The other basic solution, with cos instead of sin, is the same motion, just starting at a different offset

in time. Note how the eigenvector of A, 

−1

0

1


 ,

describes the relative motion of the three cars, i.e., the first and last cars are moving in opposite di-

rections, whereas the middle car is stationary. The corresponding eigenvalue λ =−2 determines the

frequency. The frequency, which is
√

2/2π oscillations per second, is also called an eigenfrequency

or resonance frequency of the system.

• Solutions for λ =−4: By Theorem 8.32, the basic solutions for v′′ =−4v are

v = sin(2t) and v = cos(2t).

This translates into the following basic solutions for w:

w = sin(2t)




0

1

0


 and w = cos(2t)




0

1

0


 .

We change this to the original variables using v = Pw, and get the basic solutions

v = sin(2t)




1

−1

1


 and v = cos(2t)




1

−1

1


 .

Writing the first of these basic solutions in the coordinates x, y, and z, we get

x = sin(2t),
y = −sin(2t),
z = sin(2t).
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This corresponds to a periodic oscillation of the train where the outer cars move right at the same

time that the middle car moves left. Each oscillation takes 2π/2≈ 3.14 seconds. Here is a “movie”

of the motion:

t = 0s

t = 0.79s

t = 1.57s

t = 2.36s

t = 3.14s

As before, the other basic solution, using cos instead of sin, is the same motion, but shifted in time.

Also, the eigenvector 


1

−1

1




describes the relative motion of the three cars; here the first and last car move in the same direction

while the middle car moves in the opposite direction. The eigenfrequency of this oscillation, at

2/2π oscillations per second, is slightly higher than the first one, due to the larger magnitude of the

eigenvalue λ =−4.

• Solutions for λ = 0: The last eigenvalue is zero. By Theorem 8.32, the general solution of w′′ = 0

is

w = a+bt,

where a and b are arbitrary constants. This translates into the following solution for w:

w = (a+bt)




0

0

1


 ,

and by the change of variables v = Pw, we get

v = (a+bt)




1

1

1


 .

Writing this in terms of the coordinates x, y, and z, we get

x = a+bt,

y = a+bt,

z = a+bt.
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This simply describes a linear motion: the three cars are moving down the track at constant speed b

from some initial starting position a.

t = 0s

t = 1s

t = 2s

t = 3s

As before, the eigenvector 


1

1

1




describes the relative motion of the three cars (in this case all moving in the same direction). The

eigenvalue λ = 0 indicates linear motion.

What we have described here are the basic solutions of the system. The solutions corresponding to each of

the eigenvalues are also called modes of the system. Thus, the train has three modes, each corresponding

to a particular eigenvalue of the matrix A. In the first mode, the middle car is stationary and the other two

cars oscillate in opposite directions. In the second mode, the middle car oscillates in the opposite direction

of the two outer cars. The third mode is a linear movement along the track.

As always, the general solution is a linear combination of basic solutions; for example, the cars might

be oscillating in both the first and second modes at their respective frequencies, while also moving down

the tracks. ♠

Exercises

Exercise 8.7.1 Solve the following system of second order linear differential equations:

y′′ = −5y − 6z,

z′′ = 3y + 4z.

Exercise 8.7.2 Solve the following system of second order linear differential equations:

y′′ = 4y − 3z,

z′′ = 2y − z.



308 Eigenvalues, eigenvectors, and diagonalization

Exercise 8.7.3 Solve the following system of second order linear differential equations:

x′′ = −2y+2z,

y′′ = x− z,

z′′ = x−2y+ z.

Exercise 8.7.4 Solve the following system of first order linear differential equations.

y′ = 4y + 6z,

z′ = −3y − 5z.

Hint: The method is similar to that of second-order equations. Use the fact, known from calculus, that the

equation f ′ = k f has basic solution f (x) = ekx. Here k is any constant (positive, negative, or zero).

Exercise 8.7.5 Consider three coupled train cars as in Example 8.34, except that all three cars have mass

1kg and both spring have spring constant k = 1 N
m . Find and solve the equations of motion.

8.8 Application: The matrix exponential

Outcomes

A. Compute eA, sinA, and cosA, for a square matrix A.

B. Apply any analytic function to a square matrix.

From calculus, recall that a function is called analytic if it can be defined by a power series. For example:

ex = 1+ x+
1

2
x2 +

1

3!
x3 +

1

4!
x4 + . . .

sinx = x− 1

3!
x3 +

1

5!
x5− 1

7!
x7± . . .

cosx = 1− 1

2
x2 +

1

4!
x4− 1

6!
x6± . . .

We know from calculus that the above power series converge for all real numbers x. Since it makes sense

to compute the n th power of a square matrix, in principle it also makes sense to plug a matrix into a power

series. For a square matrix A, we can define

eA = I +A+
1

2
A2 +

1

3!
A3 +

1

4!
A4 + . . .

sinA = A− 1

3!
A3 +

1

5!
A5− 1

7!
A7± . . .

cosA = I− 1

2
A2 +

1

4!
A4− 1

6!
A6± . . .
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The goal of this section is to investigate whether these power series converge, and if yes, how to compute

the sum of the series. We begin with the case of a diagonal matrix.

Example 8.35: Exponential of a diagonal matrix

Compute eD, where

D =

[
x 0

0 y

]
.

Solution. By definition,

eD = I +D+
1

2
D2 +

1

3!
D3 + . . .

=

[
1 0

0 1

]
+

[
x 0

0 y

]
+

1

2

[
x2 0

0 y2

]
+

1

3!

[
x3 0

0 y3

]
+ . . .

=

[
1+ x+ 1

2x2 + 1
3!x

3 + . . . 0

0 1+ y+ 1
2y2 + 1

3!y
3 + . . .

]

=

[
ex 0

0 ey

]
.

Therefore, the exponential of a diagonal matrix is computed by taking the exponential of each diagonal

entry. Note that this proves, in particular, that the sum converges. ♠

The same argument also works for applying other analytic functions to diagonal matrices, for example:

sin

[
x 0

0 y

]
=

[
sinx 0

0 siny

]
,

cos

[
x 0

0 y

]
=

[
cosx 0

0 cosy

]
.

But how can we compute the matrix exponential of a non-diagonal matrix? This can be done by diagonal-

ization. The following theorem shows how:

Theorem 8.36: Matrix functions by diagonalization

Suppose A is a diagonalizable square matrix, with A = PDP−1. Then

eA = PeDP−1,

sinA = P(sinD)P−1,

cosA = P(cosD)P−1.

Proof. We have

eA = I +A+
1

2
A2 +

1

3!
A3 + . . .

= I +PDP−1 +
1

2
(PDP−1)2 +

1

3!
(PDP−1)3 + . . .
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= PIP−1 +PDP−1 +
1

2
PD2P−1 +

1

3!
PD3P−1 + . . .

= P(I +D+
1

2
D2 +

1

3!
D3 + . . .)P−1

= PeDP−1.

The proof for sin and cos is similar. Indeed, the same method works for any analytic function. ♠

Example 8.37: A matrix exponential

Compute eA, where

A =

[
−8 10

−5 7

]
.

Solution. We first diagonalize A. Following the usual method, we find that the eigenvalues are λ = −3

and λ = 2, with corresponding eigenvectors

[
2

1

]
and

[
1

1

]
.

Therefore, we can diagonalize A as A = PDP−1, where

P =

[
2 1

1 1

]
, D =

[
−3 0

0 2

]
, and P−1 =

[
1 −1

−1 2

]
.

By Theorem 8.36, we have

eA = PeDP−1 =

[
2 1

1 1

][
e−3 0

0 e2

][
1 −1

−1 2

]
=

[
2e−3− e2 −2e−3 +2e2

e−3− e2 −e−3 +2e2

]
.

♠

Exercises

Exercise 8.8.1 Compute eA and cosA for the following matrices:

(a) A =

[
1 0

0 2

]
, (b) A =

[
4 2

−3 −1

]
, (c) A =




0 1 1

1 0 −1

−1 1 2


 .

Exercise 8.8.2 The cube root is an analytic function. Compute the cube root of the matrix

A =

[
22 −21

14 −13

]
.
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Exercise 8.8.3 Use matrix exponentials to find the solution to the first-order linear differential equation

[
x

y

]′
=

[
0 −1

6 5

][
x

y

]

with initial value [
x(0)
y(0)

]
=

[
2

2

]
.

Hint: form the matrix exponential eAt and then the solution is eAt v0, where v0 is the initial vector.

8.9 Properties of eigenvectors and eigenvalues

Outcomes

A. Know that eigenvectors corresponding to distinct eigenvalues are linearly independent.

B. Compute the algebraic and geometric multiplicity of an eigenvalue.

C. Determine whether a matrix is diagonalizable from the geometric multiplicities of its eigen-

values.

In this section, we state some useful properties of eigenvectors and eigenvalues. The first question we

consider is whether eigenvectors for different eigenvalues are linearly independent. This is indeed the

case, as the following proposition shows:

Proposition 8.38: Eigenvectors for different eigenvalues are linearly independent

Let A be a square matrix, and suppose that A has distinct eigenvalues λ1, . . . ,λk with corresponding

eigenvectors v1, . . . ,vk. Then v1, . . . ,vk are linearly independent.

Proof. Suppose, for the sake of obtaining a contradiction, that v1, . . . ,vk are linearly dependent. Let m the

the smallest index such that vm is redundant, i.e., such that vm is a linear combination of previous vectors.

Say

vm = a1v1 + . . .+am−1vm−1. (8.6)

Multiplying the equation by A, we get

Avm = a1Av1 + . . .+am−1Avm−1,

and therefore, since v1, . . . ,vm are eigenvectors,

λmvm = a1λ1v1 + . . .+am−1λm−1vm−1. (8.7)
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Subtracting λm times equation (8.6) from (8.7), we get

0 = a1(λ1−λm)v1 + . . .+am−1(λm−1−λm)vm−1.

Since v1, . . . ,vm−1 are, by assumption, linearly independent (because vm was the leftmost redundant vec-

tor), it follows that a1(λ1−λm) = 0, . . . , am−1(λm−1−λm−1) = 0. Since the eigenvalues λ1, . . . ,λm are,

by assumption, distinct, it follows that a1, . . . ,am−1 = 0. But then (8.6) implies that vm = 0, contradicting

the assumption that vm is an eigenvector (and therefore non-zero). ♠

An immediate consequence of this proposition is that an n×n-matrix with n distinct eigenvalues is diag-

onalizable.

Corollary 8.39: Distinct eigenvalues

Let A be an n×n-matrix and suppose it has n distinct eigenvalues. Then A is diagonalizable.

Proof. Each of the n eigenvalues has an eigenvector, and by Proposition 8.38, they are linearly independent.

Then A is diagonalizable by Theorem 8.21. ♠

The next issue we consider is that of “repeated” eigenvalues. There are two senses in which an eigenvalue

can occur “more than once”. The first is if the eigenvalue appears as a repeated root of the characteristic

polynomial. For example, if the characteristic polynomial is p(λ ) = (1−λ )(1−λ )(3−λ ), then we say

that the root λ = 1 appears with multiplicity two, and the root λ = 3 appears with multiplicity one. We

call this the algebraic multiplicity of the eigenvalue.

The second sense in which an eigenvalue can occur “more than once” is when an eigenvalue has more

than one linearly independent eigenvector. In other words, when the eigenspace has dimension greater

than 1. We call this the geometric multiplicity of the eigenvalue.

The following definition summarizes these concepts.

Definition 8.40: Algebraic and geometric multiplicity

Let λ̂ be an eigenvalue of a square matrix A. Then the algebraic multiplicity of λ̂ is the largest

power k such that (λ̂ −λ )k is a factor of the characteristic polynomial. The geometric multiplicity

of λ̂ is the dimension of its eigenspace E
λ̂

.

One would hope that the algebraic and geometric multiplicities are always equal. Unfortunately, this is

not the case, as the following example shows.

Example 8.41: Algebraic and geometric multiplicity

Let

A =




3 1 0 0 0

0 3 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 5




.

Find the algebraic and geometric multiplicity of each eigenvalue of A.
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Solution. The characteristic polynomial is (3−λ )2(4−λ )2(5−λ ). Therefore, the eigenvalues are 3, 4,

and 5, with algebraic multiplicity 2, 2, and 1, respectively. To compute the geometric multiplicity, we need

to find each eigenspace. For λ = 3, we must solve (A−3I)v = 0, or equivalently,




0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0




.

This system has rank 4, and the only basic solution is [1,0,0,0,0]T . Thus, the eigenspace E3 is 1-

dimensional, and the geometric multiplicity of λ = 3 is 1. A similar calculation show that λ = 4 has

geometric multiplicity 2 and λ = 5 has geometric multiplicity 1. The information is summarized in the

following table:

Eigenvalue λ = 3 λ = 4 λ = 5

Algebraic multiplicity 2 2 1

Geometric multiplicity 1 2 1

♠

In the example, the geometric multiplicity is either smaller than or equal to the algebraic multiplicity. The

following proposition states that this is always the case.

Proposition 8.42: Algebraic and geometric multiplicity

Let λ̂ be an eigenvalue of a matrix A, with algebraic multiplicity k and geometric multiplicity m.

Then

1≤ m≤ k.

Proof. It is clear that m ≥ 1, because each eigenvalue, by definition, must have at least one associated

eigenvector. Therefore, the eigenspace is at least 1-dimensional. We must show m ≤ k. Assume that A is

an n×n-matrix. By assumption, the geometric multiplicity of λ̂ is m, so the eigenspace E
λ̂

has dimension

m. So there exist m linearly independent eigenvectors v1, . . . ,vm for the eigenvalue λ̂ . Extend v1, . . . ,vm to

a basis v1, . . . ,vn of Rn, and let P be the invertible matrix that has v1, . . . ,vn as its columns. Let B= P−1AP.

Since the first m columns of P are eigenvectors of A for the eigenvalue λ̂ , it follows that B is of the form



λ̂ 0 · · · 0 ∗ · · · ∗
0 λ̂ · · · 0 ∗ · · · ∗
...

...
. . .

...
. . .

...

0 0 · · · λ̂ ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
. . .

...
. . .

...

0 0 · · · 0 ∗ · · · ∗




,

i.e., the first m columns of B are like those of a diagonal matrix. Then from the cofactor method for

computing determinants, we know that det(B−λ I) contains the factor (λ̂ −λ )m. But since A and B are



314 Eigenvalues, eigenvectors, and diagonalization

similar matrices, they have the same characteristic polynomial. Therefore, det(A−λ I) also has (λ̂ −λ )m

as a factor. It follows, by definition of algebraic multiplicity, that m≤ k, as desired. ♠

We know from Theorem 8.21 that an n× n-matrix is diagonalizable if and only if it has n linearly inde-

pendent eigenvectors. We can re-state this in terms of geometric multiplicity as follows.

Proposition 8.43: Geometric multiplicity and diagonalization

An n×n-matrix A is diagonalizable if and only if the sum of the geometric multiplicities of all the

eigenvalues of A is n.

Proof. By Proposition 8.38, eigenvectors corresponding to different eigenvalues are linearly independent.

Therefore, by taking a basis of each eigenspace, we can obtain exactly as many linearly independent eigen-

vectors as the sum of the dimensions of all the eigenspaces, i.e., the sum of the geometric multiplicities of

all eigenvalues. By Theorem 8.21, A is diagonalizable if and only if this number is n. ♠

Exercises

Exercise 8.9.1 Find the algebraic and geometric multiplicity of each eigenvalue of the following matrices.

Which of the matrices are diagonalizable?

(a) A =

[
1 1

−1 3

]
, (b) B =

[
−7 8

−4 5

]
,

(c) C =




2 −1 −1

0 4 2

0 −1 1


 , (d) D =




3 1 −1

0 2 1

0 −1 4


 , (e) E =



−2 0 1

−1 −1 1

−2 1 0


 .

Exercise 8.9.2 Determine which of the following matrices are diagonalizable.

(a) A is a 3×3-matrix with eigenvalues −1 and 3. The eigenvalue −1 has algebraic multiplicity 2 and

geometric multiplicity 1. The eigenvalue 3 has algebraic and geometric multiplicity 1.

(b) B is a 4× 4-matrix with eigenvalues 2 and −2. The eigenvalue 2 has algebraic and geometric

multiplicity 1. The eigenvalue −2 has algebraic and geometric multiplicity 3.

(c) C is a 5×5-matrix with eigenvalues 1 and 3. The eigenvalue 1 has algebraic and geometric multi-

plicity 2, and the eigenvalue 3 has algebraic and geometric multiplicity 1.
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8.10 The Cayley-Hamilton Theorem

Outcomes

A. For a square matrix A, find a polynomial p(x) such that p(A) = 0.

In this section, we will consider the so-called Cayley-Hamilton theorem. It states that every square

matrix is a root of its own characteristic polynomial. We use the following notation. If

p(λ ) = anλ n +an−1λ n−1 + . . .+a1λ +a0

is a polynomial, we denote by p(A) the matrix defined by

p(A) = anAn +an−1An−1 + . . .+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

Theorem 8.44: Cayley-Hamilton theorem

Let A be a square matrix and let p(λ )= det(A−λ I) be its characteristic polynomial. Then p(A)= 0.

Before we prove this theorem, we consider an example.

Example 8.45: Cayley-Hamilton theorem

Let

A =

[
3 4

−1 2

]
.

Find the characteristic polynomial p(λ ), and compute p(A).

Solution. The characteristic polynomial is

p(λ ) = det(A−λ I) =

∣∣∣∣
3−λ 4

−1 2−λ

∣∣∣∣ = (3−λ )(2−λ )− (−1)4 = λ 2−5λ +10.

Applying the characteristic polynomial to A, we get

p(A) = A2−5A+10I =

[
3 4

−1 2

]2

−5

[
3 4

−1 2

]
+

[
10 0

0 10

]

=

[
5 20

−5 0

]
−
[

15 20

−5 10

]
+

[
10 0

0 10

]
=

[
0 0

0 0

]
,

just as predicted by the Cayley-Hamilton theorem. ♠
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The remainder of this section is devoted to the proof of the Cayley-Hamilton theorem. Readers who are

not interested in the proof can skip this material. We begin with a lemma:

Lemma 8.46: Polynomials with matrix coefficients

Let A0, . . . ,Am be n×n-matrices and assume that for all scalars λ ,

A0 +A1λ + . . .+Amλ m = 0.

Then each Ai = 0.

Proof. Multiply by λ−m to obtain

A0λ−m +A1λ−m+1 + . . .+Am−1λ−1 +Am = 0.

Now let |λ | → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ−m+1 +A1λ−m+2 + . . .+Am−1 = 0.

Now let |λ | → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ → ∞ to obtain Ai = 0 for

all i. ♠

The following is a simple consequence of the lemma.

Corollary 8.47:

Let Ai and Bi be n×n-matrices and suppose that

A0 +A1λ + . . .+Amλ m = B0 +B1λ + . . .+Bmλ m

for all λ . Then for any n×n-matrix C,

A0 +A1C+ . . .+AmCm = B0 +B1C+ . . .+BmCm.

Proof. Subtracting the right-hand side from the left-hand side and using Lemma 8.46, we get that Ai = Bi

for all i. But then the conclusion immediately follows. ♠

With this preparation, it is now relatively easy to prove the Cayley-Hamilton theorem.

Proof of the Cayley-Hamilton Theorem. Let A be an n× n-matrix, and let p(λ ) = det(A− λ I) be its

characteristic polynomial. Let adj(A−λ I) be the adjugate of the matrix A−λ I (see Section 7.6 for the

definition of the adjugate). Since each of the entries of the adjugate is a cofactor of A−λ I, the entries are

polynomials in λ of degree at most n−1. Therefore, the adjugate can be written in the form

adj(A−λ I) =C0 +C1λ + . . .+Cn−1λ n−1.

By Theorem 7.29, we have

det(A−λ I) I = (A−λ I) adj(A−λ I),

or equivalently,

p(λ ) I = (A−λ I)(C0+C1λ + . . .+Cn−1λ n−1).
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Since this equation holds for all λ , Corollary 8.47 may be used. Therefore, if λ is replaced with A, the

two sides will be equal. Thus

p(A) I = (A−A)(C0+C1A+ . . .+Cn−1An−1) = 0.

It follows that p(A) = 0, concluding the proof of the Cayley-Hamilton Theorem. ♠

Exercises

Exercise 8.10.1 Let

A =

[
5 7

−4 3

]
.

Find the characteristic polynomial p(λ ), and compute p(A).

Exercise 8.10.2 Let

A =




1 2 0

0 2 −1

0 1 4


 .

Find the characteristic polynomial p(λ ), and compute p(A).

Exercise 8.10.3

(a) Let A be a 2×2-matrix. Prove that A2 is a linear combination of A and I.

(b) Given an example of a 3×3-matrix A such that A2 is not a linear combination of A and I.

8.11 Complex eigenvalues and eigenvectors

Outcomes

A. Find the complex eigenvalues and eigenvectors of a matrix.

B. Diagonalize a matrix over the complex numbers.

An n× n-matrix is diagonalizable if and only if it has n linearly independent eigenvectors. But as we

saw in Example 8.9, if we work over the real numbers, it can sometimes happen that a matrix has no

eigenvalues, and therefore no eigenvectors, at all. For example, the matrix

A =

[
0 −1

1 0

]
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has characteristic polynomial λ 2+1. Since the equation λ 2+1 does not have any roots in the real numbers,

there are no real eigenvalues.

On the other hand, the fundamental theorem of algebra tell us that over the complex numbers, every

non-constant polynomial has a root. In fact, every polynomial of degree n factors into n linear factors.

Therefore, every matrix has at least one eigenvalue over the complex numbers. Some matrices are diago-

nalizable over the complex numbers but not over the real numbers. An introduction to complex numbers

and the fundamental theorem of algebra can be found in Appendix A.

Example 8.48: Complex eigenvalues and eigenvectors

Find the eigenvectors and eigenvalues of

A =

[
0 −1

1 0

]

over the complex numbers. Diagonalize A if possible.

Solution. The characteristic polynomial is λ 2 + 1. This has no roots in the real numbers, but it has two

roots λ = i and λ =−i in the complex numbers. To find the eigenvectors for λ = i, we solve (A− iI)v= 0:
[
−i −1 0

1 −i 0

]
R1 ↔ R2≃

[
1 −i 0

−i −1 0

]
R2 ← R2+iR1≃

[
1 −i 0

0 0 0

]
.

Thus, the basic eigenvector for λ = i is

v1 =

[
i

1

]
.

Similarly, to find the eigenvectors for λ =−i, we solve (A+ iI)v = 0:
[

i −1 0

1 i 0

]
R1 ↔ R2≃

[
1 i 0

i −1 0

]
R2 ← R2−iR1≃

[
1 i 0

0 0 0

]
.

Thus, the basic eigenvector for λ =−i is

v2 =

[
−i

1

]
.

Since we have found two linearly independent eigenvectors, the matrix A is diagonalizable. We have

A = PDP−1, where

P =

[
i −i

1 1

]
and D =

[
i 0

0 −i

]
.

♠

Example 8.49: Complex eigenvalues and eigenvectors

Find the eigenvectors and eigenvalues of

A =

[
1 −1

1 1

]

over the complex numbers. Diagonalize A if possible.
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Solution. The characteristic polynomial is

det(A−λ I) =

∣∣∣∣
1−λ −1

1 1−λ

∣∣∣∣= (1−λ )2 +1 = λ 2−2λ +2.

To find the roots, we use the quadratic formula. The roots are given by:

λ =
−b±

√
b2−4ac

2a
=

2±
√
−4

2
= 1± i.

Note that since the discriminant b2− 4ac is negative, there are no real solutions. However, we find two

complex solutions λ = 1+ i and λ = 1− i. To find the eigenvectors for λ = 1+ i, we solve the equation

(A− (1+ i)I)v = 0: [
−i −1 0

1 −i 0

]
≃ . . .≃

[
1 −i 0

0 0 0

]
.

The basic eigenvector for λ = 1+ i is

v1 =

[
i

1

]
.

Similarly, the basic eigenvector for λ = 1− i is

v2 =

[
−i

1

]
.

Since we have found two linearly independent eigenvectors, the matrix A is diagonalizable. We have

A = PDP−1, where

P =

[
i −i

1 1

]
and D =

[
1+ i 0

0 1− i

]
.

♠

Example 8.50: Diagonalize a matrix over the complex numbers

Diagonalize the matrix

A =



−3 −2 4

2 1 0

−2 −2 3


 .

Solution. The characteristic polynomial is

p(λ ) = (−3−λ )(1−λ )(3−λ )−16+8(1−λ )+4(3−λ ) =−λ 3 +λ 2−3λ −5.

By trial and error, we find that λ =−1 is one of the roots. We factor out (λ +1):

p(λ ) = (λ +1)(−λ 2 +2λ −5).

We then use the quadratic formula to find the other two eigenvalues, i.e., the roots of −λ 2 +2λ −5. They

are:

λ =
−2±

√
−16

−2
= 1±2i.

Eigenvectors:
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• For λ =−1, we solve (A− (−1)I)v = 0:


−2 −2 4 0

2 2 0 0

−2 −2 4 0


 ≃ . . .≃




1 1 0 0

0 0 1 0

0 0 0 0


 .

The basic eigenvector is

v1 =



−1

1

0


 .

• For λ = 1+2i, we solve (A− (1+2i)I)v = 0:



−4−2i −2 4 0

2 −2i 0 0

−2 −2 2−2i 0




R1 ← −R1/2

R2 ← R2/2

R3 ← −R3/2
≃




2+ i 1 −2 0

1 −i 0 0

1 1 i−1 0




R1 ↔ R2≃




1 −i 0 0

2+ i 1 −2 0

1 1 i−1 0




R2 ← R2−(2+i)R1

R3 ← R3−R1≃




1 −i 0 0

0 2i −2 0

0 1+ i i−1 0




R2 ← R2/2i

R3 ← R3/(1+i)
≃




1 −i 0 0

0 1 i 0

0 1 i 0




R1 ← R1+iR2

R3 ← R3−R2≃




1 0 −1 0

0 1 i 0

0 0 0 0


 .

The basic eigenvector is

v2 =




1

−i

1


 .

• For λ = 1−2i, we solve (A− (1−2i)I)v = 0:


−4+2i −2 4 0

2 2i 0 0

−2 −2 2+2i 0


 ≃ . . .≃




1 0 −1 0

0 1 −i 0

0 0 0 0


 .

The basic eigenvector is

v3 =




1

i

1


 .

Therefore, A = PDP−1, where

P =



−1 1 1

1 −i i

0 1 1


 and D =



−1 0 0

0 1+2i 0

0 0 1−2i


 .
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♠

In Example 8.48, the complex eigenvalues were i and −i. In Example 8.49, the complex eigenvalues were

1+ i and 1− i. In Example 8.50, the complex eigenvalues were 1+2i and 1−2i, and there was also a real

eigenvalue of −1. Is it a coincidence that the complex eigenvalues always come in conjugate pairs? The

following proposition states that this is always the case.

Proposition 8.51: Complex conjugate eigenvalues

Let A be a square matrix whose entries are real numbers. If λ is an eigenvalue of A, then so is λ .

Proof. Assume λ is an eigenvalue of A with corresponding eigenvector v. Then Av = λv. Taking complex

conjugates of both sides of the equation, we have Av = λv, and therefore Av = λv. Since A is matrix

with real entries, we have A = A, and therefore Av = λv. It follows that λ is an eigenvalue of A with

corresponding eigenvector v. ♠

It is important to note that even over the complex numbers, not all matrices are diagonalizable. On the one

hand, the characteristic polynomial of an n×n-matrix always factors into n linear factors over the complex

numbers. Therefore, the sum of the algebraic multiplicities of the eigenvalues is always n. However, it

can still happen that the geometric multiplicity of some eigenvalue is less than its algebraic multiplicity.

In that case, the matrix is not diagonalizable, even over the complex numbers. We have:

Proposition 8.52: Diagonalizability criterion

A square matrix A is diagonalizable over the complex numbers if and only if the geometric multi-

plicity of each eigenvalue is equal to its algebraic multiplicity.

Proof. Let A be an n× n-matrix. By the fundamental theorem of algebra, the characteristic polynomial

factors into n linear factors. Therefore, the sum of the algebraic multiplicities of all the eigenvalues is n.

We know by Proposition 8.42 that the geometric multiplicity of each eigenvalue less than or equal to its

algebraic multiplicity. If the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity,

then the sum of the geometric multiplicities is n, and therefore A is diagonalizable by Proposition 8.43.

On the other hand, if the geometric multiplicity of some eigenvalue is less than its algebraic multiplicity,

then the sum of the geometric multiplicities is less than n, and A is not diagonalizable. ♠

Example 8.53: Non-diagonalizable matrix

Show that the matrix A =

[
1 1

0 1

]
cannot be diagonalized, even over the complex numbers.

Solution. The characteristic polynomial is (1− λ )2, and therefore the only eigenvalue is λ = 1, with

algebraic multiplicity 2. On the other hand, the eigenspace for λ = 1 is 1-dimensional:

[
0 1

0 0

]
v =

[
0

0

]
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has a 1-dimensional solution space. Therefore, we can find only one basic eigenvector, and the matrix is

not diagonalizable. ♠

To finish up this chapter, we will consider an application of complex eigenvalues. We will solve a recur-

rence as in Section 8.6. But this time, although the recurrence relation only uses real numbers, complex

numbers will be required to solve it.

Example 8.54: Solving a recurrence using complex eigenvalues

Consider the sequence of numbers defined by the recurrence

f0 = 1,

f1 = 3,

fn+2 = 2 fn+1−2 fn, for all n≥ 0.

Solve the recurrence, i.e., find a closed formula for fn.

Solution. The first few members of the sequence are:

1,3,4,2,−4,−12,−16,−8,16, . . .

To solve the recurrence, let

vn =

[
fn

fn+1

]
,

so that for all n≥ 0,

vn+1 =

[
fn+1

fn+2

]
=

[
fn+1

2 fn+1−2 fn

]
=

[
0 1

−2 2

][
fn

fn+1

]
=

[
0 1

−2 2

]
vn.

We then diagonalize the matrix

A =

[
0 1

−2 2

]
.

The characteristic polynomial is

p(λ ) = λ 2−2λ +2.

The eigenvalues are the roots of the characteristic polynomial. We compute them using the quadratic

formula:

λ1,λ2 =
2±
√

4−8

2
=

2±2i

2
= 1± i.

To find the eigenvectors for λ1 = 1+ i, we solve the equation (A− (1+ i)I)v = 0:

[
−1− i 1 0

−2 1− i 0

]
R1 ← (1−i)R1≃

[
−2 1− i 0

−2 1− i 0

]
≃

[
−2 1− i 0

0 0 0

]
.

A basic eigenvector for λ = 1+ i is

v =

[
1− i

2

]
.
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Similarly, a basic eigenvector for λ = 1− i is

u =

[
1+ i

2

]
.

Since we have found two linearly independent eigenvectors, the matrix A is diagonalizable. We have

A = PDP−1, where

P =

[
1− i 1+ i

2 2

]
and D =

[
1+ i 0

0 1− i

]
.

The inverse of P is

P−1 =
1

4

[
2i 1− i

−2i 1+ i

]
.

Finally, we use this information to solve the recurrence:

fn =
[

1 0
][ fn

fn+1

]

=
[

1 0
]

vn

=
[

1 0
]

An v0

=
[

1 0
]

PDnP−1 v0

=
[

1 0
][ 1− i 1+ i

2 2

][
(1+ i)n 0

0 (1− i)n

]
1

4

[
2i 1− i

−2i 1+ i

][
1

3

]

=
1

4

[
1− i 1+ i

][ (1+ i)n 0

0 (1− i)n

][
3− i

3+ i

]

=
1

4
((1− i)(1+ i)n(3− i)+(1+ i)(1− i)n(3+ i))

=
1

4
((2−4i)(1+ i)n+(2+4i)(1− i)n)

=
1

2
((1−2i)(1+ i)n+(1+2i)(1− i)n) .

We can use this, for example, to calculate the 8 th element of the sequence:

f8 =
1

2

(
(1−2i)(1+ i)8+(1+2i)(1− i)8

)
=

1

2
((1−2i)16+(1+2i)16) =

32

2
= 16.

♠

Exercises

Exercise 8.11.1 Find the (real or complex) eigenvalues and eigenvectors of the following matrices. Diag-

onalize each matrix if possible.

A =

[
2 1

−1 2

]
, B =

[
−1 −2

1 1

]
, C =




2 −1 3

0 1 1

−1 1 0


 , D =




1 1 1

−1 2 0

1 −1 1



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Exercise 8.11.2 I know a certain real 2×2-matrix A. My matrix has complex eigenvalue λ = 1+2i and

corresponding eigenvector v =

[
1

i

]
.

(a) Find another eigenvalue and corresponding eigenvector of A.

(b) Diagonalize A.

(c) What is the secret matrix A?

Exercise 8.11.3 Solve the recurrence

a0 = 0,

a1 = 1,

an+2 = 4an+1−5an, for all n≥ 0.



9. Vector spaces

In Chapter 2, we considered Rn, the set of n-dimensional column vectors. We now introduce a more

general concept of “vector”, as an element of an abstract vector space. Basically, vectors are entities that

can be added and scaled. While some vectors look like lists of numbers (for example, column vectors, row

vectors), other kinds of vectors don’t look like lists of numbers at all (for example, functions, polynomials).

Part of the power of linear algebra comes from our ability to find vector spaces in many unexpected places.

Much of the content of this chapter will be a repetition of things we have already seen in Chapter 2

in the context of Rn. For example, we will be talking about linear combinations, linear independence,

spanning sets, bases, subspaces, linear transformations, and so on. We initially introduced these concepts

in the context of the vector space Rn, so that they would be easier to understand. We will now see that

they in fact apply to all vector spaces.

9.1 Definition of vector spaces

Outcomes

A. Develop the concept of a vector space through axioms.

B. Use the vector space axioms to determine if a set and its operations constitute a vector space.

C. Encounter several examples of vector spaces.

Definition 9.1: Vector space

Let K be a field. A vector space over K is a set V equipped with two operations of addition and

scalar multiplication, such that the following properties hold:

(A1) Commutative law of addition: u+v = v+u.

(A2) Associative law of addition: (u+v)+w = u+(v+w).

(A3) The existence of an additive unit: there exists an element 0 ∈V such that for all u, u+0 = u.

(A4) The law of additive inverses: u+(−u) = 0.

(SM1) The distributive law over vector addition: k(u+v) = ku+ kv.

(SM2) The distributive law over scalar addition: (k+ ℓ)u = ku+ ℓu.

(SM3) The associative law for scalar multiplication: k(ℓu) = (kℓ)u.

(SM4) The rule for multiplication by one: 1u = u.

325
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The above definition is concerned about two operations: vector addition, denoted by v+w, and scalar

multiplication, denoted by kv or sometimes k · v. In the law of additive inverses, we have written −u for

(−1)u. Often, the scalars will be real numbers, but it is also possible to use scalars from a different field

K. We also use the term K-vector space to refer to a vector space over a field K. When K = R, we also

speak of a real vector space, and when K = C, we speak of a complex vector space. If the field is clear

from the context, we often don’t mention it at all, and just speak of a “vector space”. The elements of a

vector space are called vectors.

Our first example of a vector space is of course Rn.

Example 9.2: Rn is a vector space

The set Rn of n-dimensional real column vectors, with the usual operations of vector addition and

scalar multiplication, is a vector space.

More generally, if K is a field, the set Kn of n-dimensional column vectors with components in K is

a K-vector space.

Proof. Properties (A1)–(A4) hold by Proposition 2.8, and properties (SM1)–(SM4) hold by Proposi-

tion 2.11. ♠

We now consider some other examples of vector spaces.

Example 9.3: Vector space of polynomials of degree 2

Let P2 be the set of all polynomials of degree at most 2 with coefficients from a field K, i.e.,

expressions of the form

p(x) = ax2 +bx+ c,

where a,b,c ∈ K. Define addition and scalar multiplication of polynomials in the usual way, i.e.,

(ax2 +bx+ c)+(a′x2 +b′x+ c′) = (a+a′)x2 +(b+b′)x+(c+ c′)

k(ax2 +bx+ c) = kax2 + kbx+ kc.

Then P2 is a vector space.

Proof. To show that P2 is a vector space, we verify the 8 vector space axioms. Let

p(x) = a2x2 +a1x+a0,

q(x) = b2x2 +b1x+b0,

r(x) = c2x2 + c1x+ c0

be polynomials in P2 and let k,ℓ be scalars.

(A1) We prove the commutative law of addition.

p(x)+q(x) = (a2x2 +a1x+a0)+(b2x2 +b1x+b0)

= (a2 +b2)x
2 +(a1 +b1)x+(a0 +b0)
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= (b2 +a2)x
2 +(b1 +a1)x+(b0 +a0)

= (b2x2 +b1x+b0)+(a2x2 +a1x+a0)

= q(x)+ p(x).

(A2) We prove the associative law of addition.

(p(x)+q(x))+ r(x) = ((a2x2 +a1x+a0)+(b2x2 +b1x+b0))+(c2x2 + c1x+ c0)

= ((a2+b2)x
2 +(a1 +b1)x+(a0 +b0))+(c2x2 + c1x+ c0)

= ((a2+b2)+ c2)x
2 +((a1 +b1)+ c1)x+((a0+b0)+ c0)

= (a2 +(b2 + c2))x
2 +(a1 +(b1 + c1))x+(a0 +(b0 + c0))

= (a2x2 +a1x+a0)+((b2+ c2)x
2 +(b1 + c1)x+(b0 + c0))

= (a2x2 +a1x+a0)+((b2x2 +b1x+b0)+(c2x2 + c1x+ c0))

= p(x)+(q(x)+ r(x)).

(A3) To prove the existence of an additive unit, let 0(x) = 0x2 +0x+0, the so-called zero polynomial.

Then

p(x)+0(x) = (a2x2 +a1x+a0)+(0x2 +0x+0)

= (a2 +0)x2 +(a1 +0)x+(a0 +0)

= a2x2 +a1x+a0

= p(x).

(A4) We prove the law of additive inverses.

p(x)+(−p(x)) = (a2x2 +a1x+a0)+(−a2x2−a1x−a0)

= (a2−a2)x
2 +(a1−a1)x+(a0−a0)

= 0x2 +0x+0

= 0(x).

(SM1) We prove the distributive law over vector addition.

k(p(x)+q(x)) = k((a2x2 +a1x+a0)+(b2x2 +b1x+b0))

= k((a2+b2)x
2 +(a1 +b1)x+(a0 +b0))

= k(a2 +b2)x
2 + k(a1 +b1)x+ k(a0 +b0)

= (ka2 + kb2)x
2 +(ka1 + kb1)x+(ka0 + kb0)

= (ka2x2 + ka1x+ ka0)+(kb2x2 + kb1x+ kb0)

= kp(x)+ kq(x).

(SM2) We prove the distributive law over scalar addition.

(k+ ℓ)p(x) = (k+ ℓ)(a2x2 +a1x+a0)

= (k+ ℓ)a2x2 +(k+ ℓ)a1x+(k+ ℓ)a0

= (ka2x2 + ka1x+ ka0)+(ℓa2x2 + ℓa1x+ ℓa0)

= kp(x)+ ℓp(x).
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(SM3) We prove the associative law for scalar multiplication.

k(ℓp(x)) = k(ℓ(a2x2 +a1x+a0))

= k(ℓa2x2 + ℓa1x+ ℓa0)

= kℓa2x2 + kℓa1x+ kℓa0

= (kℓ)(a2x2 +a1x+a0)

= (kℓ)p(x).

(SM4) Finally, we prove the rule for multiplication by one.

1p(x) = 1(a2x2 +a1x+a0)

= 1a2x2 +1a1x+1a0

= a2x2 +a1x+a0

= p(x).

Since the operations of addition and scalar multiplication on P2 satisfy the 8 vector space axioms, P2 is a

vector space. ♠

Our next example of a vector space is the set of all m×n-matrices.

Example 9.4: Vector space of matrices

Let Mm,n be the set of all m×n-matrices with entries in a field K, together with the usual operations

of matrix addition and scalar multiplication. Then Mm,n is a vector space.

Proof. The properties (A1)–(A4) hold by Proposition 4.11, and the properties (SM1)–(SM4) hold by

Proposition 4.14. ♠

We now examine an example of a set that does not satisfy all of the above axioms, and is therefore not a

vector space.

Example 9.5: Not a vector space

Let V denote the set of 2×3-matrices. Let us define a non-standard addition in V by A⊕B = A for

all matrices A,B ∈ V . Let scalar multiplication in V be the usual scalar multiplication of matrices.

Show that V is not a vector space.

Solution. In order to show that V is not a vector space, it suffices to find one of the 8 axioms that is not

satisfied. We will begin by examining the axioms for addition until one is found which does not hold. In

fact, for this example, the very first axiom fails. Let

A =

[
1 0 0

0 0 0

]
, B =

[
0 0 0

1 0 0

]
.

Then A⊕B = A and B⊕A = B. Since A 6= B, we have A⊕B 6= B⊕A for these two matrices, so property

(A1) is false. ♠
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Our next example looks a little different.

Example 9.6: Vector space of functions

Let X be a nonempty set, K a field, and define FuncX ,K to be the set of functions defined on X and

valued in K. In other words, the elements of FuncX ,K are functions f : X → K. The sum of two

functions is defined by

( f +g)(x) = f (x)+g(x),

and the scalar multiplication is defined by

(k f )(x) = k( f (x)).

Then FuncX ,K is a vector space.

Proof. To verify that FuncX ,K is a vector space, we must prove the 8 axioms of vector spaces. Let f ,g,h

be functions in FuncX ,K, and let k,ℓ be scalars. Recall that two functions f ,g are equal if for all x ∈ X , we

have f (x) = g(x).

(A1) We prove the commutative law of addition. For all x ∈ X , we have

( f +g)(x) = f (x)+g(x) = g(x)+ f (x) = (g+ f )(x).

Therefore, f +g = g+ f .

(A2) We prove the associative law of addition. For all x ∈ X , we have

(( f +g)+h)(x) = ( f +g)(x)+h(x) = ( f (x)+g(x))+h(x)

= f (x)+(g(x)+h(x)) = ( f (x)+(g+h)(x)) = ( f +(g+h))(x).

Therefore, ( f +g)+h = f +(g+h).

(A3) To prove the existence of an additive unit, let 0 denote the function that is given by 0(x) = 0. This is

called the zero function. It is an additive unit because for all x,

( f +0)(x) = f (x)+0(x) = f (x),

and so f +0 = f .

(A4) We prove the law of additive inverses. Let − f = (−1) f be the function that satisfies (− f )(x) =
− f (x). Then for all x,

( f +(− f ))(x) = f (x)+(− f )(x) = f (x)+− f (x) = 0.

Therefore f +(− f ) = 0.

(SM1) We prove the distributive law over vector addition. For all x, we have

(k( f +g))(x) = k( f +g)(x) = k( f (x)+g(x))

= k f (x)+ kg(x) = (k f + kg)(x),

and so k( f +g) = k f + kg.
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(SM2) We prove the distributive law over scalar addition.

((k+ ℓ) f )(x) = (k+ ℓ) f (x) = k f (x)+ ℓ f (x) = (k f + ℓ f )(x),

and so (k+ ℓ) f = k f + ℓ f .

(SM3) We prove the associative law for scalar multiplication.

((kℓ) f )(x) = (kℓ) f (x) = k(ℓ f (x)) = (k(ℓ f ))(x),

so (kℓ f ) = k(ℓ f ).

(SM4) Finally, we prove the rule for multiplication by one. For all x ∈ X , we have

(1 f )(x) = 1 f (x) = f (x),

and therefore 1 f = f .

It follows that FuncX ,K satisfies all the required axioms and is a vector space. ♠

For the next two examples of vector spaces, we leave the proofs as an exercise.

Example 9.7: Infinite sequences

Let K be a field. A sequence of elements of K is an infinite list

(a0, a1, a2, a3 . . .),

where ai ∈ K for all i. We also use the notation (ai)i∈N, or occasionally (ai), to denote such a

sequence. Let SeqK be the set of sequences of elements of K. We add two sequences by adding

their i th elements:

(ai)i∈N+(bi)i∈N = (ai +bi)i∈N.

We scale a sequence by scaling each of its elements:

k(ai)i∈N = (kai)i∈N.

Then SeqK is a vector space.

Example 9.8: Vector space of polynomials of unbounded degree

Let K be a field, and let P be the set of all polynomials (of any degree) with coefficients from K,

i.e., expressions of the form

p(x) = anxn +an−1xn−1 + . . .+a1x+a0,

where n ≥ 0 and a0, . . . ,an ∈ K. Addition and scalar multiplication of polynomials are defined in

the usual way . Then P is a vector space.
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We conclude this section by deriving some initial consequences of the vector space axioms.

Proposition 9.9: Elementary consequences of the vector space axioms

In any vector space, the following are true:

(a) The additive unit is unique. In other words, whenever u+v = u, then v = 0.

(b) Additive inverses are unique. In other words, whenever u+v = 0, then v =−u.

(c) 0u = 0 for all vectors u.

(d) The following cancellation law holds: if u+w = v+w, then u = v.

Proof. We prove the first three properties, and leave the last one as an exercise. Assume V is any vector

space over a field K.

(a) Consider arbitrary vectors u,v ∈V and assume

u+v = u.

Applying the law (A1) (commutative law) to the left-hand side, we have

v+u = u.

Adding −u to both sides of the equation, we have

(v+u)+(−u) = u+(−u).

Applying the law (A2) (associative law) to the left-hand side, we have

v+(u+(−u)) = u+(−u).

Applying the law (A4) (additive inverse law) to both sides of the equation, we have

v+0 = 0.

Applying the law (A3) (additive unit law) to the left-hand side, we have

v = 0.

This proves that whenever u+v = u, then v = 0, or in other words, v = 0 is the only element acting

as an additive unit.

(b) Consider arbitrary vectors u,v ∈V and assume

u+v = 0.

Applying the law (A1) (commutative law) to the left-hand side, we have

v+u = 0.
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Adding −u to both sides of the equation, we have

(v+u)+(−u) = 0+(−u).

Applying the law (A2) (associative law) to the left-hand side, we have

v+(u+(−u)) = 0+(−u).

Applying the law (A4) (additive inverse law) to the left-hand side, we have

v+0 = 0+(−u).

Applying the law (A1) (commutative law) to the right-hand side, we have

v+0 =−u+0.

Applying the law (A3) (additive unit law) to both sides of the equation, we have

v =−u.

This proves that whenever u+v = 0, then v = −u, or in other words, v = −u is the only element

acting as an additive inverse of u.

(c) First, note that the scalar 0 ∈ K satisfies the property 0+0 = 0, by property (A3) of the definition of

a field. Now let u ∈V be any vector. Using the vector space law (SM2) (distributive law over scalar

addition) and 0+0 = 0, we have

0u+0u = (0+0)u = 0u.

Next, we use a small trick: add −(0u) to both sides of the equation. This gives

(0u+0u)+(−(0u)) = 0u+(−(0u)).

Applying the additional laws (A2), (A4), and (A3), we have

0u+(0u+(−(0u))) = 0u+(−(0u)),

0u+0 = 0,

0u = 0.

This proves that 0u = 0 holds for all vectors u, as desired.

(d) This is left as an exercise.

♠

Exercises

Exercise 9.1.1 Consider the set R2 with the following non-standard addition operation⊕:

(a,b)⊕ (c,d) = (a+d,b+ c).
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Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Exercise 9.1.2 Consider R2 with the following non-standard addition operation⊕:

(a,b)⊕ (c,d) = (0,b+d).

Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Exercise 9.1.3 Consider R2 with the following non-standard scalar multiplication:

c⊙ (a,b) = (a,cb).

Vector addition is defined as usual. Is this a vector space? Explain why or why not.

Exercise 9.1.4 Consider R2 with the following non-standard addition operation⊕:

(a,b)⊕ (c,d) = (a− c,b−d).

Scalar multiplication is defined as usual. Is this a vector space? Explain why or why not.

Exercise 9.1.5 Prove that the set SeqK from Example 9.7 is a vector space. Hint: this is a special case of

Example 9.6, if you realize that a sequence (ai)i∈N is the same thing as a function a : N→ K.

Exercise 9.1.6 Prove that the set P from Example 9.8 is a vector space.

Exercise 9.1.7 Let V be the set of functions defined on a set X that have values in a vector space W . Is

this a vector space? Explain.

Exercise 9.1.8 Consider the set R2 with the following non-standard operations of addition and scalar

multiplication:

(a,b)⊕ (c,d) = (a+ c−1, b+d−1),
k⊙ (c,d) = (kc+(1− k), kd+(1− k)).

Show that R2 is a vector space with these operations. Hint: the zero vector is not (0,0), but (1,1).

Exercise 9.1.9 Consider the set R of real numbers. Addition of real numbers is defined in the usual way,

and scalar multiplication is just multiplication of one real number by another. In other words, x+y means

to add the two numbers and xy means to multiply them. Show that R, with these operations, is a real vector

space.

Exercise 9.1.10 Let K = Q be the field of rational numbers, and let V be the set of real numbers of the

form a+b
√

2, where a and b are rational numbers. Show that with the usual operations, V is a Q-vector

space.

Exercise 9.1.11 Let K = Q be the field of rational numbers, and let V = R be the set of real numbers.

Show that with the usual operations, V is a Q-vector space.
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Exercise 9.1.12 Let P3 be the set of all polynomials of degree 3 or less. That is, these are of the form

ax3 +bx2 + cx+d. Addition and scalar multiplication of polynomials are defined as usual. Show that P3

is a vector space.

Exercise 9.1.13 Let X = {1,2, . . . ,n}, and consider the space FuncX ,R of real-valued functions defined

on X. Explain how FuncX ,R can be considered as Rn.

Exercise 9.1.14 Prove the cancellation law from Proposition 9.9.

9.2 Linear combinations, span, and linear independence

Outcomes

A. Determine if a vector is within a given span.

B. Determine if a set is spanning.

C. Determine if a set is linearly independent.

In this section, we will again explore concepts introduced earlier in terms of Rn and extend them to apply

to abstract vector spaces.

We can now revisit many of the concepts first introduced in Chapter 2 in the context of general vec-

tor spaces. We will look at linear combinations, span, and linear independence in this section, and at

subspaces, bases, and dimension in the next section.

Definition 9.10: Linear combination

Let V be a vector space over a field K. Let u1, . . . ,un ∈ V . A vector v ∈ V is called a linear

combination of u1, . . . ,un if there exist scalars a1, . . . ,an ∈ K such that

v = a1u1 + . . .+anun.

Example 9.11: Linear combination of matrices

Write the matrix A =

[
1 3

−1 2

]
as a linear combination of

[
1 0

0 1

]
,

[
1 0

0 −1

]
,

[
0 1

1 0

]
, and

[
0 −1

1 0

]
.
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Solution. We must find coefficients a,b,c,d such that

[
1 3

−1 2

]
= a

[
1 0

0 1

]
+b

[
1 0

0 −1

]
+ c

[
0 1

1 0

]
+d

[
0 −1

1 0

]
,

or equivalently, [
1 3

−1 2

]
=

[
a+b c−d

c+d a−b

]
.

This yields a system of four equations in four variables:

a+b = 1,

c+d = −1,

c−d = 3,

a−b = 2.

We can easily solve the system of equations to find the unique solution a = 3
2 , b = −1

2 , c = 1, d = −2.

Therefore [
1 3

−1 2

]
=

3

2

[
1 0

0 1

]
− 1

2

[
1 0

0 −1

]
+1

[
0 1

1 0

]
−2

[
0 −1

1 0

]
.

♠

Example 9.12: Linear combination of polynomials

Write the polynomial p(x) = 7x2 +4x−3 as a linear combination of

q1(x) = x2, q2(x) = (x+1)2, and q3(x) = (x+2)2.

Solution. Note that q2(x) = (x+ 1)2 = x2 + 2x+ 1 and q3(x) = (x+ 2)2 = x2 + 4x+ 4. We must find

coefficients a,b,c such that p(x) = aq1(x)+bq2(x)+ cq3(x), or equivalently,

7x2 +4x−3 = ax2 + b(x2 +2x+1) + c(x2 +4x+4).

Collecting equal powers of x, we can rewrite this as

7x2 +4x−3 = (a+b+ c)x2 + (2b+4c)x + (b+4c).

Since two polynomials are equal if and only if each corresponding coefficient is equal, this yields a system

of three equations in three variables
a+b+ c = 7,

2b+4c = 4,

b+4c = −3.

We can easily solve this system of equations and find that the unique solution is a = 5
2 , b = 7, c = −5

2 .

Therefore

p(x) =
5

2
q1(x) + 7q2(x) −

5

2
q3(x).

♠
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As in Chapter 2, the span of a set of vectors is defined as the set of all of its linear combinations. We

generalize the concept of span to consider spans of arbitrary (possibly finite, possibly infinite) sets of

vectors.

Definition 9.13: Span of a set of vectors

Let V be a vector space over some field K, and let S be a set of vectors (i.e., a subset of V ). The

span of S is the set of all linear combinations of elements of S. In symbols, we have

spanS = {a1u1 + . . .+akuk | u1, . . . ,uk ∈ S and a1, . . . ,ak ∈ K } .

It is important not to misunderstand this definition. Even when the set S is infinite, each individual element

v ∈ spanS is a linear combination of only finitely many elements u1, . . . ,uk of S. The definition does not

talk about infinite linear combinations

a1u1 +a2u2 +a3u3 + . . .

Indeed, such infinite sums do not typically exist. However, different elements v,w ∈ spanS can be linear

combinations of a different (finite) number of vectors of S. For example, it is possible that v is a linear

combination of 10 elements of S, and w is a linear combination of 100 elements of S.

Example 9.14: Spans of sequences

Consider the vector space SeqK of infinite sequences. For every k ∈N, let ek be the sequence whose

k th element is 1 and that is 0 everywhere else, i.e.,

e0 = (1,0,0,0,0, . . .),
e1 = (0,1,0,0,0, . . .),
e2 = (0,0,1,0,0, . . .),

and so on. Let S =
{

ek | k ∈ N
}

. Which of the following sequences are in spanS?

(a) f = (1,1,1,0,0,0,0,0, . . .) (followed by infinitely many zeros),

(b) g = (1,2,0,5,0,0,0,0, . . .) (followed by infinitely many zeros),

(c) h = (1,1,1,1,1,1,1,1, . . .) (followed by infinitely many ones),

(d) k = (1,0,1,0,1,0,1,0, . . .) (forever alternating between 1 and 0).

Solution.

(a) We have f ∈ spanS, because f = e0 + e1 + e2.

(b) We have g ∈ spanS, because g = 1e0 +2e1 +5e3.

(c) The sequence h is not in spanS, because each element of spanS is, by definition, a linear combina-

tions of finitely many elements of S. No linear combinations of finitely many ek can end in infinitely

many ones. Note that we are not permitted to write an infinite sum such as e0 + e1 + e2 + . . .. Such

infinite sums are not defined in vector spaces.
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(d) The sequence k is not in spanS, for the same reason. We would need to add infinitely many se-

quences of the form ek to get a sequence that contains infinitely many non-zero elements. However,

this is not permitted by the definition of span. ♠

Example 9.15: Span of polynomials

Let p(x) = 7x2 +4x−3. Is p(x) ∈ span
{

x2, (x+1)2, (x+2)2
}

?

Solution. The answer is yes, because we found in Example 9.12 that p(x) = 5
2 x2 + 7(x+1)2 − 5

2 (x+2)2.

♠

We say that a set of vectors S is a spanning set for V if V = spanS.

Example 9.16: Spanning set

Let S =
{

x2, (x+1)2, (x+2)2
}

. Show that S is a spanning set for P2, the vector space of all

polynomials of degree at most 2.

Solution. This is analogous to Example 9.12. Consider an arbitrary element p(x) = p2x2 + p1x+ p0 of

P2. We must show that p(x) ∈ spanS, i.e., that there exists a,b,c ∈ K such that

p(x) = ax2 +b(x+1)2 + c(x+2)2.

We can equivalently rewrite this equation as

p2x2 + p1x+ p0 = (a+b+ c)x2 + (2b+4c)x + (b+4c),

which yields the system of equations

a+b+ c = p2

2b+4c = p1

b+4c = p0

≃




1 1 1 p2

0 2 4 p1

0 1 4 p0


 ≃




1 1 1 p2

0 2 4 p1

0 0 4 2p0− p1


 .

Since the system has rank 3, it has a solution. Therefore, p(x) ∈ spanS. Since p(x) was an arbitrary

element of P2, it follows that S is a spanning set for P2. ♠

To define the concept of linear independence in a general vector space, it will be convenient to base our

definition on the “alternative” characterization of Theorem 5.12. Here too, we generalize the definition to

an arbitrary (finite or infinite) set of vectors.

Definition 9.17: Linear independence

Let V be a vector space over some field K. A finite set of vectors {u1, . . . ,uk} is called linearly

independent if the equation

a1 u1 + . . .+ak uk = 0

has only the trivial solution a1, . . . ,ak = 0. An infinite set S of vectors is called linearly independent

if every finite subset of S is linearly independent. A set of vectors is called linearly dependent if it

is not linearly independent.
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Example 9.18: Linearly independent polynomials

Determine whether the polynomials x2, x2 +2x−1, and 2x2− x+3 are linearly independent.

Solution. According to the definition of linear independence, we must solve the equation

ax2 +b(x2 +2x−1)+ c(2x2− x+3) = 0.

If there is a non-trivial solution, the polynomials are linearly dependent. If there is only the trivial solution,

they are linearly independent. We first rearrange the left-hand side to collect equal powers of x:

(a+b+2c)x2 +(2b− c)x+(3c−b) = 0.

This turns into a system of 3 equations in 3 variables:

a+b+2c = 0

2b− c = 0

3c−b = 0

≃




1 1 2 0

0 2 −1 0

0 −1 3 0


 ≃




1 1 2 0

0 2 −1 0

0 0 1 0


 .

Since the system has rank 3, there are no free variables. The only solution is a = b = c = 0, and the

polynomials are linearly independent. ♠

Example 9.19: Linearly independent sequences

Let K be a field, and consider again the sequences from Example 9.14,

e0 = (1,0,0,0,0, . . .),
e1 = (0,1,0,0,0, . . .),
e2 = (0,0,1,0,0, . . .),

and so on. Let S =
{

e0,e1,e2, . . .
}

. This is an infinite subset of SeqK . Show that S is linearly

independent.

Solution. Since S is an infinite set, we have to show that every finite subset of S is linearly independent.

So consider a finite subset {
ek1 ,ek2 , . . . ,ekn

}
⊆ S

and assume that

a1ek1 +a2ek2 + . . .+anekn = 0. (9.1)

We have to show that a1, . . . ,an = 0. Consider some index i ∈ {1, . . . ,n}. Then the k th
i element of a1ek1 +

. . .+anekn is equal to ai by the left-hand side of (9.1), but it is also equal to 0 by the right-hand side of (9.1).

It follows that ai = 0 for all i ∈ {1, . . . ,n}, and therefore
{

ek1 ,ek2 , . . . ,ekn
}

is linearly independent. Since{
ek1 ,ek2 , . . . ,ekn

}
was an arbitrary finite subset of S, it follows, by definition, that S is linearly independent.

♠
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Example 9.20: Linearly dependent matrices

Determine whether the following elements of M2,2 are linearly independent:

M1 =

[
−1 0

1 −1

]
, M2 =

[
1 1

1 2

]
, M3 =

[
1 3

5 4

]
.

Solution. To determine whether {M1,M2,M3} is linearly independent, we look for solutions to

aM1+bM2 + cM3 = 0.

Notice that this equation has non-trivial solutions, for example a = 2, b = 3 and c = −1. Therefore the

matrices are linearly dependent. ♠

Example 9.21: Linearly independent functions

In the vector space FuncR,R of real-valued functions on the real numbers, show that the functions

f (x) = sinx and g(x) = cosx are linearly independent.

Solution. Assume Asinx +Bcosx = 0. Note that this is an equality of functions, which means that it

is true for all x. In particular, substituting x = 0 into the equation, and using the fact that sin0 = 0 and

cos0 = 1, we have

0 = Asin0+Bcos0 = A ·0+B ·1 = B,

and therefore B = 0. On the other hand, substituting x = π
2 into the equation, and using the fact that

sin π
2 = 1 and cos π

2 = 0, we have

0 = Asin
π

2
+Bcos

π

2
= A ·1+B ·0 = A,

and therefore A = 0. Therefore, the equation Asinx+Bcosx = 0 only has the trivial solution A = B = 0,

and it follows that sinx and cosx are linearly independent. ♠

The properties of linear independence that were discussed in Chapter 2 remain true in the general setting

of vector spaces. For example, the first two parts of Proposition 5.16 apply without change. (The third

part specifically mentions Rn, but can be generalized to any vector space of dimension n). We also have

the usual characterization of linear dependence in terms of redundant vectors:

Proposition 9.22: Linear dependence and redundant vectors

Let V be a vector space, and let u1,u2, . . . be a (finite or infinite) sequence of vectors in V . If

u1,u2, . . . are linearly dependent, then at least one of the vectors can be written as a linear combina-

tion of earlier vectors in the sequence:

u j = a1 u1 +a2 u2 + . . .+a j−1 u j−1,

for some j. As in Section 5.2.1, we say that the vector u j is redundant.
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Proof. Suppose that the vectors are linearly dependent. Then the equation b1u1 + . . .+ bkuk = 0 has a

non-trivial solution for some k. In other words, there exist scalars b1, . . . ,bk, not all equal to zero, such that

b1u1+ . . .+bkuk = 0. Let j be the largest index such that b j 6= 0. Then b1u1+ . . .+b ju j = 0. Dividing by

b j and solving for u j, we have u j =−b1
b j

u1− . . .− b j−1

b j
u j−1, so u j can be written as a linear combination

of earlier vectors as claimed. ♠

Example 9.23: Polynomials of increasing degree

Consider a sequence of non-zero polynomials p1(x), . . . , pk(x) of increasing degree, i.e., such that

the degree of each pi(x) is strictly larger than that of pi−1(x). Show that p1(x), . . . , pk(x) are linearly

independent in the vector space P.

Solution. A polynomial of degree n cannot be a linear combination of polynomials of degree less than

n. Therefore, none of the polynomials p1(x), . . . , pk(x) can be written as a linear combination of earlier

polynomials. By Proposition 9.22, p1(x), . . . , pk(x) are linearly independent. ♠

Theorems 5.18 and 5.19 also remain true in the setting of general vector spaces. The original proofs can be

used without change. Thus, if u1, . . . ,uk are linearly independent, then every vector v ∈ span{u1, . . . ,uk}
can be uniquely written as a linear combination of u1, . . . ,uk. Also, given any finite set of vectors, we can

find a subset of the vectors that is linearly independent and has the same span.

We finish this section with a useful observation about linear independence. Namely, given a linearly

independent set of vectors and one more vector that is not in their span, then we can add the vector to the

set and it will remain linearly independent.

Proposition 9.24: Adding to a linearly independent set

Suppose {u1, . . . ,uk} is linearly independent and v /∈ span{u1, . . . ,uk}. Then the set

{u1, . . . ,uk,v}

is also linearly independent.

Proof. Assume, on the contrary, that the set were linearly dependent. Then by Proposition 9.22, one of

the vectors can be written as a linear combination of earlier vectors. This vector cannot be one of the ui,

because u1, . . . ,uk are linearly independent. It also cannot be v, because v /∈ span{u1, . . . ,uk}. Therefore,

our assumption cannot be true, and the set is linearly independent. ♠

Exercises

Exercise 9.2.1 Let V be a vector space and suppose {u1, . . . ,uk} is a set of vectors in V . Show that 0 is in

span{u1, . . . ,uk}.
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Exercise 9.2.2 Determine whether p(x) = 4x2− x is in span
{

x2 + x, x2−1, − x+2
}

.

Exercise 9.2.3 Determine whether p(x) =−x2 + x+2 is in span
{

x2 + x+1, 2x2 + x
}

.

Exercise 9.2.4

(a) Write A =

[
1 3

0 0

]
as a linear combination of

{[
1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 0

1 1

]
,

[
0 1

1 1

]}
.

(b) Show that the above set of four matrices is a spanning set for M2,2, the vector space of all 2× 2-

matrices.

Exercise 9.2.5 Let K be a field, and consider the vector space SeqK of infinite sequences of scalars. A

sequence a = (ai)i∈N is called finitely supported if all but finitely many elements of the sequence are zero.

In other words, a is finitely supported if there exists some N ∈ N such that ak = 0 for all k ≥ N. Let

e0,e1,e2, . . . be the sequences from Example 9.14. Show that a ∈ span
{

e0,e1,e2, . . .
}

if and only if a is

finitely supported.

Exercise 9.2.6 For each of the following sets of polynomials, determine whether the set is linearly inde-

pendent. If it is linearly dependent, write one polynomial as a linear combination of the other polynomials

in the set.

(a)
{

x+1, x2 +2, x2− x−3
}

.

(b)
{

x2 + x, −2x2−4x−6, 2x−2
}

.

Exercise 9.2.7 Determine whether each of the following sets of matrices is linearly independent. If it is

linearly dependent, write one matrix as a linear combination of the other matrices in the set.

(a)

{[
1 2

0 1

]
,

[
−7 2

−2 −3

]
,

[
4 0

1 2

]}
.

(b)

{[
1 0

0 1

]
,

[
0 1

0 1

]
,

[
1 0

1 0

]
,

[
0 0

1 1

]}
.

Exercise 9.2.8 Consider polynomials

{
aix

3 +bix
2 + cix+di | i = 1,2,3,4

}
.

Show that this collection of polynomials is linearly independent if and only if




a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4



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is an invertible matrix.

Exercise 9.2.9 Assume u,v,w are linearly independent elements of some vector space V . Consider the

set of vectors

R =
{

2u−w, w+v, 3v+ 1
2u
}

.

Determine whether R is linearly independent.

9.3 Subspaces

Outcomes

A. Determine whether a set of vectors is a subspace of a given vector space.

B. Determine whether two sets of vectors span the same subspace.

In this section we will consider subspaces of general vector spaces.

Definition 9.25: Subspace

Let V be a vector space over a field K. A subset W ⊆V is said to be a subspace of V if the following

conditions hold:

1. 0 ∈W , where 0 is the additive unit of V .

2. W is closed under addition: Whenever u,v ∈W , then u+v ∈W .

3. W is closed under scalar multiplication: Whenever k ∈ K and u ∈W , then ku ∈W .

Example 9.26: Subspaces of R3

As we have seen in Section 5.3, the subspaces of R3 are:

• the zero subspace {0};

• lines through the origin;

• planes through the origin;

• R3 itself.
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Example 9.27: Space of continuous functions

Let V = FuncR,R, the vector space of functions from real numbers to real numbers. Let W ⊆ V be

the subset of continuous functions. Then W is a subspace of V .

Proof. We know from calculus that:

1. the zero function, defined by f (x) = 0 for all x, is continuous;

2. if f ,g are continuous functions, then f +g is continuous;

3. if f is a continuous function and k a constant, then k f is continuous.

It follows that W contains 0, and is closed under addition and scalar multiplication. Therefore, W is a

subspace of V . ♠

Example 9.28: Space of differentiable functions

Let V = FuncR,R. Recall from calculus that a function f : R→ R is called differentiable if the

derivative f ′(x) exists for all x ∈ R. Let W ⊆V be the subset of differentiable functions. Then W is

a subspace of V .

Proof. We know from calculus that:

1. The zero function, defined by f (x) = 0 for all x, is differentiable. In fact, its derivative is f ′(x) = 0.

2. If f ,g are differentiable functions, then h = f +g is differentiable. In fact, h′(x) = f ′(x)+g′(x).

3. if f is a differentiable function and k a constant, then h = k f is differentiable. In fact, h′ = k f ′.

It follows that W contains 0, and is closed under addition and scalar multiplication. Therefore, W is a

subspace of V . ♠

Example 9.29: Space of sequences satisfying a linear recurrence

Let V = SeqR, the vector space of sequences of real numbers. Let

W = {a ∈ SeqR | for all n≥ 0, an+2 = an +an+1} .

In other words, W is the set of all sequences satisfying the recurrence relation an+2 = an + an+1.

Then W is a subspace of V .

Proof. Before we prove that W is a subspace, let us first consider an example. The following sequences

are elements of W , because they both satisfy the recurrence:

a = (1, 1, 2, 3, 5, 8, 13, 21, . . .) ,

b = (1, 3, 4, 7, 11, 18, 29, 47, . . .) .
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Note that if we add these sequences, we get

a+b = (2, 4, 6, 10, 16, 26, 42, 68, . . .) ,

which again satisfies the recurrence. Therefore, the set W is closed under the addition of these particular

sequences a and b. We now prove the properties in general.

1. Let z be the zero sequence, defined by zn = 0 for all n. Then z satisfies the recurrence relation, since

for all n≥ 0, zn+2 = 0 = zn + zn+1. Therefore z ∈W .

2. To show that W is closed under addition, consider any two sequences a,b ∈W , and let c = a+ b.

Then for all n≥ 0,

cn+2 = an+2 +bn+2 = (an +an+1)+(bn +bn+1) = (an +bn)+(an+1 +bn+1) = cn + cn+1,

so c satisfies the recurrence. It follows that c ∈W , and therefore W is closed under addition.

3. To show that W is closed under scalar multiplication, consider any k ∈ R and a ∈W , and let c = ka.

Then for all n≥ 0,

cn+2 = kan+2 = k(an+an+1) = kan + kan+1 = cn + cn+1,

so c satisfies the recurrence. It follows that c ∈W , and therefore W is closed under scalar multipli-

cation.

♠

Example 9.30: Solution space of a linear differential equation

Let V = FuncR,R. Recall from calculus that a differential equation is an equation about an un-

known function and its derivatives. For example

f ′′ =− f

is a differential equation. The functions f (x) = sinx, f (x) = cosx, and f (x) = 0 are examples of

solutions of this differential equation. Let W be the set of all functions that are solutions of the

differential equation f ′′ =− f . Then W is a subspace of V .

Proof.

1. The zero function f (x) = 0 is a solution of the differential equation, and therefore an element of W .

2. To show that W is closed under addition, let f ,g ∈W and consider h = f +g. Then f ′′ = − f and

g′′ =−g, and therefore h′′ = f ′′+g′′ =− f +(−g) =−h. Therefore, h ∈W , and W is closed under

addition.

3. To show that W is closed under scalar multiplication, let k ∈ R and f ∈W , and consider h = k f .

Then f ′′ = − f , and therefore h′′ = k f ′′ = k(− f ) = −h. It follows that h ∈W , and therefore W is

closed under scalar multiplication.
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♠

Example 9.31: Subspace of polynomials

Consider P2, the vector space of polynomials of degree at most 2, with coefficients in a field K. Fix

some element r ∈ K, and let W ⊆ P2 be the subset of polynomials that have r as a root. Then W is

a subspace of P2.

Proof. We can express W as follows:

W = {p ∈ P2 | p(r) = 0} .

We need to show that W is a subspace.

1. The zero polynomial, given by 0(x) = 0, satisfies 0(r) = 0, so 0 ∈W .

2. To show that W is closed under addition, assume p,q ∈W , and let s = p+ q. Then p(r) = 0 and

q(r) = 0, therefore s(r) = p(r)+q(r) = 0. It follows that s ∈W .

3. To show that W is closed under scalar multiplication, assume p(x) ∈W and k be a scalar. Then

(kp)(r) = k(p(r)) = k0 = 0, and therefore kp ∈W .

♠

Example 9.32: Trivial subspaces of V

Let V be an arbitrary vector space over a field K. Then {0} is a subspace of V , called the zero

subspace. Also, V is a subspace of itself.

Proof. Clearly {0} contains 0, and is closed under addition and scalar multiplication because 0+ 0 = 0

and k0 = 0 for all k. Similarly, V contains 0 and is closed under addition and scalar multiplication, because

addition and scalar multiplication are operations on V . Therefore, both {0} and V are subspaces of V . ♠

The interest of subspaces lies in the fact that they are vector spaces in their own right, as stated in the

following proposition.

Proposition 9.33: Subspaces are vector spaces

Let W be a subspace of a vector space V . Then W satisfies the vector space axioms (A1)–(A4)

and (SM1)–(SM4), with respect to the same operations (addition and scalar multiplication) as those

defined on V .

Proof. Since W is a subspace, it is closed under addition and scalar multiplication. This ensures that

addition and scalar multiplication are well-defined operations on W . The axioms (A1), (A2), (A4), and

(SM1)–(SM4) all obviously hold in W , because they hold in V (two elements of W are equal in W if and

only if they are equal in V ). The axiom (A3) holds because 0 ∈W . ♠
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We end this section with an observation about spans.

Proposition 9.34: Span is smallest subspace containing given vectors

Let V be a vector space over some field K, and consider a set of vectors S ⊆ V . Then spanS is the

smallest subspace of V containing S. More explicitly, we have:

(a) The set spanS is a subspace of V , and S⊆ spanS.

(b) If W is any other subspace of V such that S⊆W , then spanS⊆W .

Proof.

(a) To show that spanS is a subspace, first note that 0 ∈ spanS, because 0 is the empty linear combi-

nation. Also, if v,u ∈ spanS, then by definition of span, there exist v1, . . . ,vk,u1, . . . ,uℓ ∈ S and

a1, . . . ,ak,b1, . . . ,bℓ ∈ K such that

v = a1v1 + . . .+akvk,

u = b1u1 + . . .+bℓuℓ.

Then

v+u = a1v1 + . . .+akvk +b1u1 + . . .+bℓu,

and therefore v+u ∈ spanS. It follows that spanS is closed under addition. The proof for scalar

multiplication is similar. Finally, every v ∈ S is trivially a linear combination of itself, v = 1v, and

therefore S⊆ spanS.

(b) Consider any other subspace W of V such that S ⊆W . To show that spanS ⊆ W , consider an

arbitrary element v ∈ spanS. By definition of span, there exist v1, . . . ,vk ∈ S and a1, . . . ,ak ∈ K such

that v = a1v1 + . . .+ akvk. By assumption, v1, . . . ,vk ∈W . Since W is closed under addition and

scalar multiplication, it follows that v ∈W . Since v was an arbitrary element of spanS, it follows

that spanS⊆W .

♠

While the last proposition looks technical, it can actually be useful for proving that two sets of vectors

span the same subspace. The following in an example of this.

Example 9.35: Equal spans

Show that the sets S =
{

x2−2x+1, x−1
}

and T =
{

x2−1, x2− x
}

span the same subspace of

P2. In other words, show that

spanS = spanT .

Solution. To show that two sets are equal, we must show that each is a subset of the other. So we will

show spanS ⊆ spanT and spanT ⊆ spanS. By Proposition 9.34, it is sufficient to show that S ⊆ spanT

and T ⊆ spanS, i.e., we must show that every element of S is a linear combination of elements of T and

vice versa.
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1. S⊆ spanT . We have

x2−2x+1 = (−1)(x2−1)+2(x2− x) ∈ spanT ,

x−1 = 1(x2−1)−1(x2− x) ∈ spanT .

Since each element of S is an element of spanT , it follows that S ⊆ spanT . By Proposition 9.34,

this implies that spanS⊆ spanT .

2. T ⊆ spanS. We have

x2−1 = 1(x2−2x+1)−2(x−1) ∈ spanS,

x2− x = 1(x2−2x+1)−1(x−1) ∈ spanS.

Since each element of T is an element of spanS, it follows that T ⊆ spanS. By Proposition 9.34,

this implies that spanT ⊆ spanS.

♠

Exercises

Exercise 9.3.1 Consider the set of symmetric n×n-matrices, i.e., matrices satisfying A = AT . Show that

this set of symmetric matrices is a subspace of Mn,n, the vector space of n×n-matrices.

Exercise 9.3.2 Consider the set of all vectors
[ x

y
]
∈ R2 such that x+ y≥ 0. Is this a subspace of R2?

Exercise 9.3.3 Consider the set of all vectors
[ x

y
]
∈ R2 such that xy = 0. Is this a subspace of R2?

Exercise 9.3.4 Let V be the set of those polynomials ax2 + bx+ c ∈ P2 such that a+ b+ c = 0. Is V a

subspace of P2? Explain.

Exercise 9.3.5 Let U ,W be subspaces of a vector space V and consider U +W defined as the set of all

vectors that can be written of the form u+w, where u ∈U and w ∈W . Show that U +W is a subspace of

V .

Exercise 9.3.6 Let U ,W be subspaces of a vector space V . Then U ∩W consists of all vectors which are

in both U and W. Show that U ∩W is a subspace of V .

Exercise 9.3.7 Let U ,W be subspaces of a vector space V . Then U ∪W consists of all vectors which are

in either U or W. Show that U ∪W is not necessarily a subspace of V by giving an example where U ∪W

fails to be a subspace.

Exercise 9.3.8 Let U =
{
[x,y,z]T ∈ R3

∣∣∣ |x| ≤ 4
}

. Is U a subspace of R3?
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Exercise 9.3.9 Let W be the subset of M2,2 given by

W =
{[

a b
c d

] ∣∣∣ a,b,c,d ∈ K, a+b = c+d
}

Is W a subspace of M2,2?

Exercise 9.3.10 Let U =
{

A ∈M2,2

∣∣∣ A
[

1 0
1 −1

]
=
[

1 1
0 −1

]
A
}

. Show that U is a subspace of M2,2.

Exercise 9.3.11 Let W be the subset of P3 given by

W =
{

ax3 +bx2 + cx+d | a,b,c,d ∈ K,d = 0
}

Is W a subspace of P3?

Exercise 9.3.12 Let W be the subset of P3 given by

W = {p(x) | p(2) = 1}

Is W a subspace of P3?

Exercise 9.3.13 Let W be the subset of SeqR consisting of all sequences that are alternating, i.e., where

ai ≥ 0 for even i and ai ≤ 0 for odd i, or vice versa. Is W a subspace of SeqR?

Exercise 9.3.14 Let W be the subset of SeqK consisting of all sequences that satisfy the recurrence relation

an+3 = an+2 +2an+1−an. Is W a subspace of SeqK?

Exercise 9.3.15 A sequence (ai)i∈N is called periodic if there exists some k > 0 such that for all i, ai+k = ai.

The number k is called a period of the sequence. For example, the following is a periodic sequence with

period 3:

(1,5,−7,1,5,−7,1,5,−7,1,5,−7,1, . . .).

(a) Show that the set of all periodic sequences of a fixed period k forms a subspace of SeqK .

(b) More difficult: show that the set of all periodic sequences of all periods forms a subspace of SeqK .

Exercise 9.3.16 A function f : R→ R is called symmetric if f (x) = f (−x) for all x ∈ R. Let W be the

subset of FuncR,R consisting of all symmetric functions. Is W a subspace of FuncR,R?

Exercise 9.3.17 A function f : R→R is said to vanish at infinity if limx→∞ f (x) = 0 and limx→−∞ f (x) =
0. Let W be the subset of FuncR,R consisting of all functions that vanish at infinity. Prove that W is a

subspace of FuncR,R.

Exercise 9.3.18 Show that the sets S =
{

x+2,(x+2)2
}

and T =
{

x2−4,x2 + x−2
}

span the same

subspace of P2.

Exercise 9.3.19 Show that the sets S =
{[

1 0
0 1

]
,
[

0 1
1 0

]}
and T =

{[
1 1
1 1

]
,
[

1 −1
−1 1

]}
span the

same subspace of M2,2.
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9.4 Basis and dimension

Outcomes

A. Find a basis of a given vector space.

B. Determine the dimension of a vector space.

C. Extend a linearly independent set of vectors to a basis.

D. Shrink a spanning set of vectors to a basis.

Definition 9.36: Basis

Let V be a vector space. A set B of vectors is called a basis of V if

1. B is a spanning set for V , and

2. B is linearly independent.

Example 9.37: Bases of P2

Consider the vector space P2 of polynomials of degree at most 2 with coefficients in a field K.

•
{

1, x, x2
}

is a basis of P2.

•
{

x2, (x+1)2, (x+2)2
}

is a basis of P2.

•
{

1, x−1, (x−1)2
}

is a basis of P2.

Unlike Rn, a vector space like P2 does not necessarily have a “standard” basis. One basis might be

useful for one application, and another basis for a different application.

Proof. It is easy to verify that each set of vectors is linearly independent and spanning. See Examples 9.16,

9.18, and 9.23 for similar calculations. ♠

Example 9.38: An infinite basis

Consider the vector space P of all polynomials with coefficients in a field K. The following is a

basis for P: {
1, x, x2, x3, x4, . . .

}
.

Note that this basis is infinite.

Proof. The polynomials 1, x, x2, x3, x4, . . . are linearly independent by Proposition 9.22. Namely, if they

were linearly dependent, then one of the polynomials could be written as a linear combination of earlier
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ones. However, this is not possible because a polynomial of degree n cannot be a linear combination of

polynomials of degree less than n.

To show that the polynomials 1, x, x2, x3, x4, . . . are a spanning set, consider an arbitrary element p(x)
of P. Then by definition, p(x) is of the form

p(x) = anxn +an−1xn−1 + . . .+a1x+a0,

for some n≥ 0 and a0, . . . ,an ∈ K. But then p(x) is a linear combination of 1, . . . ,xn, i.e., it is in the span

of
{

1, x, x2, x3, x4, . . .
}

. ♠

Example 9.39: Not a basis

Consider the vector space SeqK of infinite sequences. As before, let ek be the sequence whose k th

element is 1 and that is 0 everywhere else, i.e.,

e0 = (1,0,0,0,0, . . .),
e1 = (0,1,0,0,0, . . .),
e2 = (0,0,1,0,0, . . .),

and so on. Then the set {
e0, e1, e2, . . .

}

is not a basis of SeqK . Indeed, although we saw in Example 9.19 that the sequences e0, e1, e2, . . .
are linearly independent, Example 9.14 shows that they are not spanning. Indeed,

W = span
{

e0, e1, e2, . . .
}

is a subspace of SeqK , consisting exactly of the finitely supported sequences, i.e., those sequences

that have only finitely many non-zero components. Thus,
{

e0, e1, e2, . . .
}

is a basis of W .

The following theorem ensures that every vector space has a basis. We will not prove this theorem, because

when the spaces are infinite-dimensional, the proof uses mathematics that is beyond the scope of this book.

The proof uses a reasoning principle called the axiom of choice, which allows us to prove the existence

of a basis even in cases where we cannot find an actual concrete example of a basis. For example, it is

not possible to give a specific example of a basis for the space SeqK , even though the following theorem

guarantees that such a basis exists.

Theorem 9.40: Existence of bases

Every vector space has a basis.

The Exchange Lemma, which we proved in the context of Rn in Section 5.4, is true in general vector

spaces.

Lemma 9.41: Exchange Lemma

Let V be a vector space over a field K. Suppose u1, . . . ,ur are linearly independent elements of

span{v1, . . . ,vs}. Then r ≤ s.
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The proof is exactly the same as that of Lemma 5.37, so we do not repeat it here. As in Section 5.4, an

important consequence of the Exchange Lemma is that any two bases of a vector space have the same size.

Theorem 9.42: Bases are of the same size

Let V be a vector space over some field K, and let B1 and B2 be bases of V . Then either B1 and B2

are both finite and have the same number of elements, or else B1 and B2 are both infinite.

Proof. We first show that B1 and B2 are either both finite or both infinite. Assume one of them, say B1,

is finite and contains s vectors. Since B1 is spanning and B2 is linearly independent, it follows from the

Exchange Lemma that B2 cannot contain more than s vectors, and in particular, B2 must be finite. So the

sets are either both finite or both infinite. If they are both finite, say of size s and r, then by the Exchange

Lemma, we have s≤ r and r ≤ s, hence r = s. ♠

This allows us to define the dimension of a vector space.

Definition 9.43: Dimension

Let V be a vector space over a field K. If V has a basis consisting of n vectors, we say that V has

dimension n, and we write dim(V ) = n. In this case we also say that V is finite-dimensional. If V

has an infinite basis, we say that V is infinite-dimensional, and we write dim(V ) = ∞.

Note that the dimension is well-defined by Theorems 9.40 and 9.42, since these theorems ensure that

every vector space has a basis (and therefore a dimension), and that any two bases are of the same size

(and therefore a vector space cannot have more than one dimension).

We now calculate the dimensions of some vector spaces we encountered in Sections 9.1 and 9.3.

• The space Rn has dimension n.

• The space P2 has dimension 3. We found several bases for this space in Example 9.37.

• The space Mm,n has dimension mn. A possible basis consists of all the matrices that contain a single

1 and zeros everywhere else.

• The space FuncX ,K is infinite-dimensional if X is an infinite set. If X is a finite set of n elements,

then this space is n-dimensional. In that case, a basis is given by the set of functions whose value is

1 for one input and 0 for all other inputs.

• The space SeqK is infinite-dimensional. We found an infinite linearly independent set in Exam-

ple 9.19, showing that the space cannot be finite-dimensional.

• The space P is infinite-dimensional. We found a basis for this space in Example 9.38.

• The subspace of FuncR,R consisting of the continuous functions is infinite-dimensional. For exam-

ple, the functions
{

1,x,x2,x3, . . .
}

form an infinite, linearly independent set of continuous functions.

• The subspace of FuncR,R consisting of the differentiable functions is infinite-dimensional. Again,

the set
{

1,x,x2,x3, . . .
}

is an infinite linearly independent set in this space.



352 Vector spaces

Example 9.44: Space of sequences satisfying a linear recurrence

In Example 9.29, we considered the space W of sequences of real numbers that satisfy the recurrence

an+2 = an +an+1. What is the dimension of this space?

Solution. The space is 2-dimensional. The easiest way to see this is to observe that a sequence a ∈W is

determined by its first two elements. We can say that the first two elements of the sequence are parameters,

and all the other elements are then computed by the recurrence relation. Specifically, suppose a0 = x and

a1 = y. Using the recurrence relation to compute the remaining elements, we have

a = (x, y, x+ y, x+2y, 2x+3y, 3x+5y, . . .)

= x(1,0,1,1,2,3, . . .)+ y(0,1,1,2,3,5, . . .).

Since this is the general form of the elements of W , and since the two sequences starting with 1,0 and 0,1

are clearly linearly independent, it follows that

{(1,0,1,1,2,3, . . .), (0,1,1,2,3,5, . . .)}

is a basis of W . ♠

Example 9.45: Solution space of a linear differential equation

In Example 9.30, we considered the space of solutions of the differential equation f ′′ =− f . What

is the dimension of this space?

Solution. From calculus, we know that the general solution of the differential equation f ′′ =− f is

f (x) = Asinx+Bcosx,

where A,B are constants. We also know, from Example 9.21, that sinx and cosx are linearly independent.

It follows that {sinx, cosx} is a basis for the solution space. The solution space is therefore 2-dimensional.

♠

We conclude this section by stating two properties of bases that generalize Theorem 5.19 and Lemma 5.44:

every linearly independent set can be extended to a basis by adding 0 or more vectors, and every spanning

set can be reduced to a basis by removing 0 or more vectors.

Proposition 9.46: Extending a linearly independent set to a basis

Let V be a vector space, and let S ⊆ V be a linearly independent set of vectors. Then S can be

extended to a basis of V , i.e., there exists a basis B of V such that S⊆ B.

Proposition 9.47: Shrinking a spanning set to a basis

Let V be a vector space, and let S⊆V be a spanning set of V . Then S can be shrunk to a basis, i.e.,

there exists a basis B of V such that B⊆ S.
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Example 9.48: Extending a linearly independent set to a basis

Let S⊆M2,2 be the linearly independent set given by

S =

{[
1 0

0 0

]
,

[
0 1

0 0

]}

Enlarge S to a basis of M2,2.

Solution. We can obtain a basis of M2,2 by adding two more linearly independent matrices

[
0 0

1 0

]
and

[
0 0

0 1

]
.

The resulting basis is

B =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}
.

♠

Example 9.49: Shrinking a spanning set to a basis

Consider the spanning set S⊆ P2 given by

S =
{

1, x, 2x+1, x2 +1, x2 +2
}

Shrink S to a basis of P2.

Solution. We use a version of the casting-out method. We examine each element S from left to right and

cast out the elements that are linear combinations of previous elements. Clearly the first two elements, 1

and x, are linearly independent. The next element, 2x+1, is redundant because it is a linear combination

of 1 and x. The next element x2+1 is linearly independent of 1 and x. The final element x2+2 is redundant

because it is a linear combination of 1 and x2 +1. Therefore, the following subset of S is a basis of P2:

B =
{

1, x, x2 +1
}

.

♠

Exercises

Exercise 9.4.1 Let P3 be the vector space of polynomials of degree at most 3. Determine which of the

following are bases for this vector space.

(a)
{

x3 +1, x2 + x, 2x3 + x2, 2x3− x2−3x+1
}

.
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(b)
{

x+1, x3 + x2 +2x, x2 + x, x3 + x2 + x
}

.

Exercise 9.4.2 Determine whether the following is a basis for P2, the vector space of polynomials of

degree at most 2. {
x2 + x+1, 2x2 +2x+1, x+1

}
.

Exercise 9.4.3 Find a basis for the following subspace of P2:

W = span
{

1+ x+ x2, 1+2x, 1+5x−3x2
}

.

Exercise 9.4.4 Find a basis for the following subspace of P3:

W = span
{

1+ x− x2 + x3, 1+2x+3x3, −1+3x+5x2 +7x3, 1+6x+4x2 +11x3
}

.

Exercise 9.4.5 Extend the following linearly independent set of polynomials to a basis of P3:

{
x3 + x2− x−1, 3x3 +2x2 +2x−1

}
.

Exercise 9.4.6 Let V be a 5-dimensional vector space. If you have 5 linearly independent vectors in V ,

can you conclude that the vectors span V ?

Exercise 9.4.7 Let V be a 5-dimensional vector space. If you have 6 vectors in V , is it possible that they

are linearly independent? Explain.

Exercise 9.4.8 Find a basis for the vector space of symmetric 3× 3-matrices, i.e., matrices satisfying

A = AT . What is the dimension of this space?

Exercise 9.4.9 Let W be the subspace of P3 (over the field R) consisting of all polynomials p(x) that

satisfy p(3) = 0. Find a basis for W . What is the dimension of W?

Exercise 9.4.10 Find a basis for U =
{

A ∈M2,2

∣∣∣ A
[

1 0
1 −1

]
=
[

1 1
0 −1

]
A
}

. What is the dimension of

U?

Exercise 9.4.11

(a) Let k be a positive integer, let Wk ⊆ SeqK be the subspace consisting of all sequences that are

periodic with period k (see Exercise 9.3.15). Find a basis for Wk. What is its dimension?

(b) More difficult: find a basis for the infinite-dimensional vector space consisting of all periodic se-

quences of all periods.

Exercise 9.4.12 Let K = Q, the field of rational numbers. Consider vectors of the form a+ b
√

2 where

a,b are rational numbers. Show that this collection of vectors is a vector space over Q and give a basis

for this vector space. What is its dimension?



9.5. Application: Error correcting codes 355

9.5 Application: Error correcting codes

Outcomes

A. Determine the block length, message length, Hamming distance, and rate of a code.

B. Determine whether a code is m-error detecting and m-error correcting.

C. Find generator and check matrices for a linear code.

D. Use the syndrome method to correct errors in code blocks.

E. Construct and use Hamming codes.

Binary codes

When transmitting or storing information on digital media, the information is usually encoded as a se-

quence of bits, i.e., 0s and 1s. For example, in the ASCII code, each symbol is encoded as a sequence of

8 bits. The letter “A” is encoded as 01000001, the letter “B” is encoded as 01000010, and so on. We can

think of a sequence of n bits as an n-dimensional column vector over the field Z2, i.e., as an element of

Zn
2. For our purposes, it is convenient to continue writing bit sequences horizontally, but we will consider

this to be merely an alternate notation for a column vector.

One issue with digital data is that the data can sometimes be corrupted. DVDs may be scratched,

magnetic storage may depolarize, and data sent by radio transmission may be subject to interference. This

can result in errors in the data, such as some 0s being changed to 1s or vice versa. One of the ways to deal

with such errors is to introduce redundancy in the way the data is encoded.

A very simple example of redundant encoding is the so-called 3-repetition code. This simply means

to repeat each bit 3 times. Thus, the bit 0 is encoded as 000 and the bit 1 as 111. For example, the bit

string 100101 is encoded as 111000000111000111. With this encoding, single bit errors are easy to detect

and correct. Assuming that at most one error occurs within each 3-bit block, the blocks can be decoded by

“majority decision”. Namely, if the bits in a block are not the same, we assume that the error occurred in

the bit that is in the minority. The following table shows the decoding scheme:

Received Likely error Corrected Decoded

000 none 000 0

100 bit 1 000 0

010 bit 2 000 0

001 bit 3 000 0

011 bit 1 111 1

101 bit 2 111 1

110 bit 3 111 1

111 none 111 1
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Example 9.50: Decoding the 3-repetition code

A message was encoded with the 3-repetition code. The receiver receives the following data:

001011000100111110. What was the likely message?

Solution. We start by dividing the received data into blocks of 3 bits:

001 011 000 100 111 110.

We then decode each block separately, using the majority rule. The first block 001 has a majority of zeros,

so the likely error is in the third bit and the likely decoding is 0. The second block 011 has a majority of

ones, so the likely error is in the first bit and the likely decoding is 1. Continuing this way, we find that the

likely original message was 01 00 11. ♠

Since the 3-repetition code can be used to correct some errors, it is called an error correcting code. This

particular code only works if there are not too many errors; namely, it can correct at most one error per

code block. The main drawback of the 3-repetition code is that it increases the message length by a factor

of 3. In this section, we will use linear algebra over the field Z2 to construct better error correcting codes.

Most error correcting codes do not work by encoding individual bits. Rather, the codes work by

dividing the message into message blocks of length k, and encoding each such message block by a code

block of length n. This leads us to the following definition:

Definition 9.51: Code

Let n and k be positive integers with k ≤ n. A code with message length k and block length n is

a set C of 2k different vectors in Zn
2. We call the elements of C the code blocks. Since there are 2k

different code blocks, they can be used to encode message blocks of length k. We say that the rate

of the code is k
n
, because for every n bits of encoded data transmitted, k bits of decoded data are

obtained.

Example 9.52: A simple code

Consider the following code with message length k = 2 and block length n = 5:

Message block Code block

00 00000

01 00111

10 11100

11 11011

(a) Encode the message 011110.

(b) Decode the message 111000011111011.

(c) What is the rate of this code? Is it better or worse than the rate of the 3-repetition code?

Solution. (a) We divide the message into blocks of length 2: 01 11 10. Then we encode each block

separately: 00111 11011 11100. (b) We divide the message into blocks of length 5: 11100 00111 11011.
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Then we decode each block separately: 10 01 11. (c) The rate is 2
5 = 0.4. It is slightly higher, and therefore

better, than the rate of the 3-repetition code, which is 1
3 ≈ 0.33. ♠

Hamming distance and error correction

The error correction capabilities of a code depend on a property called the Hamming distance of the code,

which we now define.

Definition 9.53: Hamming weight and Hamming distance

• Let v be a vector in Zn
2. The Hamming weight of v, denoted W (v), is the number of compo-

nents of v that are equal to 1.

• Let v,w be two vectors in Zn
2. The Hamming distance between v and w, denoted D(v,w), is

the number of components where v and w differ. We can also express this as the Hamming

weight of v−w, i.e., D(v,w) =W (v−w).

• Finally, we say that the Hamming distance of a code is equal to the smallest Hamming

distance between any two code blocks.

A code with block length n, message length k, and Hamming distance d is also called an (n,k,d)-
code.

Example 9.54: Hamming distance

Calculate the Hamming distance between 00111 and 11100. What is the Hamming distance of the

3-repetition code? What is the Hamming distance of the code in Example 9.52?

Solution. The vectors 00111 and 11100 differ in 4 places, so their Hamming distance is D(00111,11100)=
4. This is also equal to the Hamming weight of 00111−11100 = 11011.

The 3-repetition code has only two code blocks: 000 and 111. Since their Hamming distance is 3, the

Hamming distance of the code is also 3.

To calculate the Hamming distance of the code from Example 9.52, we calculate the Hamming distance

between all pairs of code blocks:
D(00000,00111) = 3,

D(00000,11100) = 3,

D(00000,11011) = 4,

D(00111,11100) = 4,

D(00111,11011) = 3,

D(11100,11011) = 3.

Since the smallest distance between any two code blocks is 3, the Hamming distance of the code is 3. ♠

The significance of a code’s Hamming distance is explained by the following definition and proposition.
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Definition 9.55: Error detection and error correction

• We say that a code C is m-error detecting if for all valid code blocks v, whenever w is

obtained from v by introducing up to m bit errors, then w is not a valid code block.

• We say that a code C is m-error correcting if for all valid code blocks v, whenever w is

obtained from v by introducing up to m bit errors, then v is the only valid code block within

Hamming distance m of w.

Proposition 9.56: Error detection and error correction

Consider a code with Hamming distance d. Then the code is:

• m-error detecting if m≤ d−1;

• m-error correcting if 2m≤ d−1.

Proof. Assume up to m errors have happened. In other words, let v be a valid code block, and let w be

the code block obtained from v by introducing up to m errors. To prove the first claim, assume m≤ d−1.

Then D(v,w)≤m≤ d−1. Since d is the minimum distance between any two valid code blocks, w cannot

be a valid code block. Hence, the errors can be detected. To prove the second claim, assume 2m≤ d−1.

Then D(v,w)≤ m. Assume that there exists another valid code block u within Hamming distance m of w,

i.e., assume D(w,u)≤ m. Then

D(v,u)≤ D(v,w)+D(w,u)≤ m+m≤ d−1.

Therefore, the Hamming distance of v and u is at most d−1, contradicting the assumption that the code

has Hamming distance d. Hence, there is no such code block u, and the errors can be corrected. ♠

Example 9.57: Error detection and error correction

Consider a code with Hamming distance 3. How many errors per code block can the code detect?

How many can it correct? Also answer this question for Hamming distance 2, 4 and 5.

Solution. By Proposition 9.56, a code with Hamming distance 3 can detect up to 2 errors and correct up

to 1 error. The answers for other Hamming distances are summarized in the following table:

Hamming distance Errors detected Errors corrected

2 1 0

3 2 1

4 3 1

5 4 2

♠



9.5. Application: Error correcting codes 359

Example 9.58: Decoding

The following message has been encoded using the code of Example 9.52. It contains some errors,

but no more than 1 error per code block. Can you decode the message?

11101 01000 11011 11111 00011

Solution. Since the code of Example 9.52 has Hamming distance 3, it can correct up to 1 error per code

block, so we are able to decode the message uniquely. For each code block, we must find the unique valid

code block that is within Hamming distance 1 or less.

Received Error Corrected Decoded

11101 bit 5 11100 10

01000 bit 2 00000 00

11011 none 11011 11

11111 bit 3 11011 11

00011 bit 3 00111 01

The decoded message is 10 00 11 11 01. ♠
We can say that a “good” error correcting code is one that has a high rate (of message length divided by

block length) and a large Hamming distance.

Linear codes

To construct a code of message length n, we need to specify a set of 2n code blocks. If n is large, it is

not really feasible to write down a list of all the code blocks, and to check all their Hamming distances

by hand. For example, a code of message length n = 10 requires 210 = 1024 code blocks, and we need to

check more than half a million Hamming distances. Instead, we will focus on a particular class of codes

that is much easier to describe. These are the linear codes.

Definition 9.59: Linear code

A linear code is a subspace of Zn
2. If the subspace is k-dimensional, then the code has message

length k and block length n.

The advantage of a linear code is that to specify the code blocks, we only need to list k basis elements,

rather than all 2k elements of the code.

Example 9.60: Linear code

Show that the code from Example 9.52 is linear. What is a basis for the code?

Solution. Consider all linear combinations of 11100 and 00111 (with scalars in Z2):

0(11100)+0(00111) = 00000,

0(11100)+1(00111) = 00111,

1(11100)+0(00111) = 11100,

1(11100)+1(00111) = 11011.
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This shows that the code of Example 9.52 is span{11100,00111}, and hence a subspace of Z5
2. A basis

for the code is {11100,00111} ♠

From Section 5.5, we know that every subspace of Zn
2, and therefore every linear code, is the column space

of some matrix G, and also the null space of some matrix H. Such matrices are called a generator matrix

and a check matrix for the code, respectively.

Definition 9.61: Generator matrix and check matrix

Consider a linear code C with block length n and message length k, i.e., a k-dimensional subspace

of Zn
2.

• A generator matrix for the code is an n× k-matrix G such that C is the column space of G.

• A check matrix for the code is an (n− k)×n-matrix H such that C is the null space of H.

Example 9.62: Generator matrix and check matrix

Find a generator matrix and check matrix for the linear code from Example 9.52.

Solution. We already found in Example 9.60 that {11100,00111} is a basis for this code. We can obtain

a generator matrix by using the basis vectors as columns:

G =




1 0

1 0

1 1

0 1

0 1




.

To find a check matrix, assume that [a,b,c,d,e] is a row of the check matrix. Then for every code block

v ∈C, we must have [a,b,c,d,e]v = 0. Since the code blocks are spanned by 11100 and 00111, it suffices

to consider the two equations

[
a b c d e

]




1

1

1

0

0



= 1a+1b+1c+0d+0e = 0

and

[
a b c d e

]




0

0

1

1

1



= 0a+0b+1c+1d+1e = 0.

Solving this system of equations, we find that the following is a basis for the solution space:

{[
1 1 0 0 0

]
,
[

1 0 1 1 0
]

,
[

1 0 1 0 1
]}
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We can use these basic solutions as the rows of the check matrix:

H =




1 1 0 0 0

1 0 1 1 0

1 0 1 0 1




♠

Encoding and the generator matrix

Let C be a linear code with generator matrix G. Since C is the column space of the generator matrix, there

is a simple encoding method: we can simply multiply the generator matrix G by a message block to obtain

the corresponding code block. In other words, if u ∈ Zk
2 is a message block, we can use v = Gu ∈ Zn

2 as

the code block.

Example 9.63: Using the generator matrix for encoding

Use the generator matrix

G =




1 0

1 0

1 1

0 1

0 1




to encode the message 01 11 10.

Solution. The message blocks are u1 =
[

0
1

]
, u2 =

[
1
1

]
, and u3 =

[
1
0

]
. We obtain the corresponding

code blocks by multiplication with the generator matrix:

v1 = Gu1 =




0

0

1

1

1




v2 = Gu2 =




1

1

0

1

1




v3 = Gu3 =




1

1

1

0

0




Therefore the encoded message is 00111 11011 11100. Note that this is the same answer as in Exam-

ple 9.52(a). ♠

Decoding and the check matrix

Let C be a linear code with check matrix H. By definition, C is the null space of the check matrix. This

means that a vector v ∈ Zn
2 is a valid code block (i.e., a code block without errors) if and only if Hv = 0.

So we can easily use the check matrix to determine whether a code block contains errors or not.

However, something even better is true. The value of Hv, when it is not zero, tell us not only that

an error has occurred, but also which error has occurred! To see why, consider a code block v′ possibly

containing errors. Then v′ = v+ e, where v is a valid code block and e is an error pattern. The error

pattern is the vector e that has a 1 in every component in which an error occurred, and a 0 everywhere else.

Then we have

Hv′ = H(v+ e) = Hv+He = 0+He = He.



362 Vector spaces

Therefore, the value of Hv′ only depends on the error pattern, and not on v. The value s = Hv’ = He

is called the syndrome of the error. A code is error correcting, for a class of error patterns, if and only

if each such error pattern has a different syndrome. In that case, we can simply make a table of all the

syndromes and corresponding error patterns, as an efficient method for correcting errors. Such a table is

called a syndrome table and the corresponding decoding method is called syndrome decoding.

Example 9.64: Syndrome decoding

Consider the linear code of Example 9.52 with check matrix

H =




1 1 0 0 0

1 0 1 1 0

1 0 1 0 1


 .

Make a syndrome table for all single-bit errors. Then use your syndrome table to decode the mes-

sage 11101 01000 11011 11111 00011.

Solution. Since we are only interested in single-bit errors, there are six error patterns to consider: 00000

(no error), 10000, 01000, 00100, 00010, and 00001. For each of these error patterns e, we compute the

corresponding syndrome He. For example,

H




0

0

0

0

0



=




0

0

0


 , H




1

0

0

0

0



=




1

1

1


 , H




0

1

0

0

0



=




1

0

0


 ,

and so on. We put this information in a table (writing the vectors horizontally as usual in this section).

This is the syndrome table:

Error pattern e Syndrome He

00000 000

10000 111

01000 100

00100 011

00010 010

00001 001

To decode the message 11101 01000 11011 11111 00011, we first calculate the syndrome of each code

block by multiplying it by the check matrix. The syndrome table then tells us the corresponding error

pattern, which we can use to correct the code block.

For example, consider the first code block 11101. Multiplying by H, we get the syndrome 001:

H




1

1

1

0

1



=




0

0

1



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The syndrome table then tells us that the corresponding error pattern is 00001. Therefore, the corrected

code block is 11101+00001 = 11100. The decoded block is 10. We proceed in the same way for all the

code blocks:

Received code block v′ Syndrome Hv′ Error pattern e Corrected code block v = v′+ e Decoded

11101 001 00001 11100 10

01000 100 01000 00000 00

11011 000 00000 11011 11

11111 011 00100 11011 11

00011 011 00100 00111 01

Therefore, the decoded message is 10 00 11 11 01. Note that this is the same answer we got in Exam-

ple 9.58. But the syndrome table gives a more systematic method of finding the error patterns, which we

previously had to do by guessing, or by comparing to all possible code blocks. ♠

Example 9.65: An invalid code block

Using the code of the previous example, suppose you have received the code block 10010. Can you

decode it?

Solution. The syndrome of this code block is

H




1

0

0

1

0



=




1

0

1


 .

Since the syndrome 101 is not in our syndrome table, it is not the syndrome of any single-bit error. There-

fore, the code block 10010 must contain more than one error. Since our code is only 1-error correcting,

this error cannot be corrected. (In fact, there are two valid code words within Hamming distance 2, namely

00000 and 11011). ♠

Hamming codes

The syndrome decoding method immediately gives us the following theorem:

Theorem 9.66: Check matrices of 1-error correcting codes

Consider a linear code with check matrix H. Then the code is 1-error correcting if and only if all

columns of the check matrix are non-zero and distinct.

Proof. The syndrome of the zero error pattern is always H0 = 0. Let ei be the error pattern containing a

single bit error in the i th component. Then its syndrome is Hei, which is the i th column of H.

If H has distinct, non-zero columns, then each possible single bit error has a different syndrome.

Therefore, the errors can be corrected.
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Conversely, if H has a column that is zero, or two columns that are equal, then the corresponding error

patterns have the same syndrome, and therefore cannot be corrected. ♠

This theorem was discovered by Richard Hamming in 1950. Hamming then realized that the best single-

error correcting binary codes can be constructed by letting the check matrix have all possible non-zero

columns. The resulting codes are called Hamming codes.

Definition 9.67: Hamming code

Let r ≥ 2 The r th Hamming code is a linear code whose check matrix H is an r× (2r−1)-matrix

that has all possible non-zero column vectors as its columns.

From the size of the check matrix, we know that the code length is n = 2r− 1. Since the check matrix

has rank r, its null space has dimension k = n− r. Thus, the r th Hamming code is an (n,k,3)-code, where

n = 2r−1 and k = 2r−1− r.

It is customary to order the columns of the check matrix so that the last r columns are the standard

basis vectors. In other words, the check matrix is usually taken to be of the form

H =
[

A I
]

where I is the r× r-identity matrix and A is the r× k-matrix consisting of the remaining columns of H. In

that case, we can take the n× k-matrix

G =

[
I

A

]

as the generator matrix, where I is the k× k-identity matrix. Specifically, for this choice of G, we have

HG = 0, ensuring that the column space of G is contained in the null space of H. Moreover, since

rankG = k, the column space of G is k-dimensional, and therefore equal to the null space of H, so that G

is indeed a correct generator matrix for the code.

Example 9.68: Hamming code for r = 3

Construct a check matrix and generator matrix for the Hamming code with r = 3. Then encode the

message 0101 1110 0111.

Solution. The check matrix must be a 3×7-matrix whose columns are all the possible non-zero vectors

of length 3. Moreover, we will follow the convention of using the standard basis vectors as the last 3

columns. Such a matrix is

H =




1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


 .
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The corresponding generator matrix G is

G =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

1 0 1 1

0 1 1 1




.

To encode the message 0101 1110 0111, we multiply the generator matrix by each code block:

G




0

1

0

1


=




0

1

0

1

0

1

0




, G




1

1

1

0


=




1

1

1

0

0

0

0




, G




0

1

1

1


=




0

1

1

1

0

0

1




.

Thus, the encoded message is 0101010 1110000 0111001. Note that the fact that the top part of the

generator matrix G is the identity matrix has the pleasant effect that the k first bits of each code block are

the corresponding message block. This makes decoding especially convenient (after any errors have been

corrected first). ♠

Example 9.69: Decoding a Hamming code

Using the Hamming (7,4,3)-code of the previous example, correct the errors in the message

1011101 1101001 0001101 1110000 and decode it.

Solution. We do not need to make a syndrome table, because the syndromes are exactly the columns of the

check matrix H. More precisely, the i th column of the check matrix is the syndrome of the error pattern

containing a single-bit error in the i th bit. We use the check matrix

H =




1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1




to calculate the syndrome of each code block:

H




1

0

1

1

1

0

1




=




1

1

1


 , H




1

1

0

1

0

0

1




=




1

0

1


 , H




0

0

0

1

1

0

1




=




0

1

0


 , H




1

1

1

0

0

0

0




=




0

0

0


 .
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From these syndromes, we can read off the error locations and correct the errors:

Received code block Syndrome Error position Error pattern Corrected code block Decoded

1011101 111 bit 4 0001000 1010101 1010

1101001 101 bit 2 0100000 1001001 1001

0001101 010 bit 6 0000010 0001111 0001

1110000 000 none 0000000 1110000 1110

Thus, the decoded message is 1010 1001 0001 1110. ♠

Example 9.70: Hamming code for r = 2

What is the Hamming code for r = 2? Have you seen this code before?

Solution. The check matrix and generator matrix for the Hamming code with r = 2 are

H =

[
1 1 0

1 0 1

]
and G =




1

1

1


 .

The code has block size n = 3 and message length k = 1. The encoding function is

G
[

0
]
=




0

0

0


 , G

[
1
]
=




1

1

1


 .

This is exactly the 3-repetition code. ♠

We end this section by remarking that the Hamming codes are very efficient. The rate of the r th Hamming

code is
k

n
=

2r−1− r

2r−1
= 1− r

2r−1
,

which is very close to 1 when r is large. The following table lists the block sizes, message sizes, and rates

of all Hamming codes up to r = 8.

r Block size n Message size k Rate

2 3 1 0.333

3 7 4 0.571

4 15 11 0.733

5 31 26 0.839

6 63 57 0.905

7 127 120 0.945

8 255 247 0.969

Of course, since the codes are only 1-error correcting, one cannot increase the block size indefinitely,

or else the probability of having two or more errors in a block becomes too large. There exist more

sophisticated error correcting codes with larger Hamming distances, which can correct many errors per

code block. You might learn more about such codes in a course on applied modern algebra.
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Exercises

Exercise 9.5.1 Encode the message 0110 using the 3-repetition code. Decode the message 100 011 000

110 101 110 after correcting single-bit errors.

Exercise 9.5.2 Use the code of Example 9.52 to encode the message 01 11 10 00 01. Use the syndrome

method to correct all single-bit errors in the message 10100 00001 11001. What is the decoded message?

Exercise 9.5.3 Consider the code

C = {000000,011100,111010,101001,100110,110101,010011,001111}.

Is this a linear code? What are the message length and block length of this code? What is its Hamming

distance? How many errors per code block can this code detect? How many can it correct?

Exercise 9.5.4 Consider a linear code with check matrix

H =




1 1 0 0 0

1 0 1 1 0

1 0 1 0 1


 .

Find a generator matrix for this code (hint: the columns of G should form a basis for the null space of H).

List all possible code blocks. What is the Hamming distance of the code? Make a syndrome table for this

code.

Exercise 9.5.5 Use the generator matrix

G =




1 0 0

1 1 1

1 0 1

0 1 0

1 1 0

0 0 1




to encode the message 111 110 101 001. Find a check matrix for this code and make a syndrome ta-

ble. Is the code 1-error correcting? Use the syndrome method to correct and decode the message

111000 101111 100111 110100.

Exercise 9.5.6 Construct check and generator matrices of a Hamming code for r = 4. What is the block

length and message length of this code? Encode the message 00110011000 10100000001. Decode the

message 001000010010000 010000001000001 after correcting single-bit errors.





10. Linear transformation of vector spaces

10.1 Definition and examples

Outcomes

A. Understand the definition of a linear transformation in the context of vector spaces.

B. Determine whether a function is linear or not.

In Chapter 6, we defined a linear transformation T : Rn→ Rm to be a function that preserves addition and

scalar multiplication. We now revisit this concept in the more general setting of vector spaces V and W .

Definition 10.1: Linear transformation

Let V and W be vector spaces over some field K. A function T : V →W is called a linear transfor-

mation from V to W if it satisfies the following two conditions:

1. T preserves addition, i.e., for all v,w ∈V , we have T (v+w) = T (v)+T (w);

2. T preserves scalar multiplication, i.e, for all v ∈V and k ∈ K, we have T (kv) = kT (v).

A linear transformation is also sometimes called a linear function or a linear map. A linear

transformation T : V →V (i.e., when V =W ) is also sometimes called an operator.

Our first example of a linear transformation is a matrix transformation. We have already seen this in

Section 6.2.

Example 10.2: Matrix transformation

Let A be an m×n-matrix. Then the function T : Rn→ Rm defined by T (v) = Av is a linear trans-

formation, called a matrix transformation. This was proved in Proposition 6.4.

There are many interesting examples of linear transformations on vector spaces other than Rn. We will

consider a few such examples.

369
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Example 10.3: Derivative operator

Let Pn be the vector space of real polynomials of degree at most n. The function D : Pn→ Pn−1 is

defined by

D(p(x)) = p′(x),

where p′(x) denotes the derivative of the polynomial p(x). The function D is called the derivative

operator.

(a) Compute D(x3), D(2x2 + x), and D(ax3 +bx2 + cx+d).

(b) Show that D is a linear transformation.

Solution.

(a) In each case, we simply take the derivative:

D(x3) = 3x2,

D(2x2 + x) = 4x+1,

D(ax3 +bx2 + cx+d) = 3ax2 +2bx+ c.

(b) First, we note that if p(x) is a polynomial of degree at most n, then its derivative p′(x) is a polynomial

of degree at most n−1. Therefore, the derivative operator D is a well-defined function from Pn to

Pn−1. To show that it preserves addition, consider any two polynomials p(x),q(x) ∈ Pn. From

calculus, we know that the derivative of p(x)+q(x) is p′(x)+q′(x). Therefore,

D(p(x)+q(x)) = (p(x)+q(x))′ = p′(x)+q′(x) = D(p(x))+D(q(x)),

and so D preserves addition. To show that it preserves scalar multiplication, consider p(x) ∈ Pn and

k ∈ R. From calculus, we know that the derivative of kp(x) is kp′(x), and therefore

D(kp(x)) = (kp(x))′ = kp′(x) = kD(p(x)).

Hence, D preserves scalar multiplication. It follows that D is a linear transformation.

♠

It is important to understand that we are not claiming that the derivative p′(x) of a polynomial p(x) is a

linear function. It is of course a polynomial. Rather, what the above example shows is that the act of

taking the derivative is a linear operation, i.e., the derivative of a sum is the sum of the derivatives, and the

derivative of a constant times a function is a constant times the derivative.

Example 10.4: A differential equation

Solve the equation p(x) = x3 +D(p(x)), where D : P3 → P2 is the derivative operator of Exam-

ple 10.3.

Solution. Every element of P3 is of the form p(x) = ax3 + bx2 + cx + d. We can write the equation

p(x) = x3 +D(p(x)) as

(ax3 +bx2 + cx+d) = x3 +(3ax2 +2bx+ c).
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For the left-hand side and right-hand side to be equal, we must have a = 1, b = 3a, c = 2b, and d = c. This

yields the unique solution (a,b,c,d) = (1,3,6,6), or p(x) = x3 +3x2 +6x+6. ♠

Example 10.5: The shift and unshift operators

Consider the vector space SeqK of infinite sequences of elements of K. The function shift : SeqK→
SeqK is defined by shifting the entire sequence to the left and dropping the first element:

shift(a0,a1,a2,a3, . . .) = (a1,a2,a3,a4, . . .).

The function unshift : SeqK → SeqK is defined by shifting the entire sequence to the right and

adding 0 as the new first element:

unshift(a0,a1,a2,a3, . . .) = (0,a0,a1,a2, . . .).

(a) Compute shift(1,2,3, . . .), unshift(shift(1,1,1, . . .)), and shift(unshift(1,1,1, . . .)).

(b) Show that shift and unshift are linear transformations.

Solution.

(a) We have

shift(1,2,3,4, . . .) = (2,3,4,5, . . .),

unshift(shift(1,1,1,1, . . .)) = unshift(1,1,1,1, . . .) = (0,1,1,1, . . .),

shift(unshift(1,1,1,1, . . .)) = shift(0,1,1,1, . . .) = (1,1,1,1, . . .).

(b) To show that shift is a linear transformation, we show that it preserves addition and scalar multipli-

cation. Let a = (a0,a1,a2, . . .) and b = (b0,b1,b2, . . .). Then

shift(a+b) = shift(a0 +b0, a1 +b1, a2 +b2, . . .)

= (a1 +b1, a2 +b2, a3 +b3, . . .)

= (a1, a2, a3, . . .)+(b1, b2, b3, . . .)

= shift(a)+ shift(b),

shift(ka) = shift(ka0, ka1, ka2, . . .)

= (ka1, ka2, ka3, . . .)

= k(a1, a2, a3, . . .)

= k shift(a).

Therefore, shift is a linear transformation. The proof for unshift is similar.

♠

Example 10.6: Properties of shift and unshift

Show that for all sequences a ∈ SeqK , we have shift(unshift(a)) = a. On the other hand, show that

in general, unshift(shift(a)) 6= a.
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Solution. For a = (a0,a1,a2, . . .), we have

shift(unshift(a)) = shift(unshift(a0,a1,a2, . . .)) = shift(0,a0,a1, . . .) = (a0,a1,a2, . . .) = a.

On the other hand, we have

unshift(shift(a)) = unshift(shift(a0,a1,a2, . . .)) = unshift(a1,a2,a3, . . .) = (0,a1,a2, . . .).

The latter is not equal to a unless a0 = 0. ♠

Example 10.7: Recurrence as a linear equation

Find the general solution to the following equation, where a ∈ SeqK:

shift(shift(a)) = shift(a)+a.

Where have you seen this equation before?

Solution. For a = (a0,a1,a2, . . .), we have

shift(shift(a)) = (a2,a3,a4, . . .),

shift(a) = (a1,a2,a3, . . .),

a = (a0,a1,a2, . . .).

Therefore a is a solution of the equation shift(shift(a)) = shift(a)+a if and only if

a2 = a1 +a0,

a3 = a2 +a1,

a4 = a3 +a2,

and so on. In other words, a is a solution if and only if an+2 = an+1+an holds for all n≥ 0. This is nothing

but the recurrence relation of Example 9.29. We already calculated the general solution in Example 9.44.

The general solution is

a = (x, y, x+ y, x+2y, 2x+3y, 3x+5y, . . .),

and a basis for the solution space is

{(1,0,1,1,2,3, . . .), (0,1,1,2,3,5, . . .)} .

♠

We conclude this section by stating some elementary properties of linear transformations. “Elementary”

means that these properties follow directly from the definition, i.e., from the fact that linear transformations

preserve addition and scalar multiplication.
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Proposition 10.8: Properties of linear transformations

Let V and W be vector spaces over a field K, and let T : V →W be a linear transformation. Then

• T preserves the zero vector: T (0) = 0.

• T preserves additive inverses: T (−v) =−T (v).

• T preserves linear combinations:

T (a1v1 +a2v2 + . . .+akvk) = a1T (v1)+a2T (v2)+ . . .+akT (vk).

Proof. To prove the first property, let k = 0 in the equation T (kv) = kT (v). Since 0v = 0 and 0T (v) = 0

by Proposition 9.9, we therefore have T (0) = 0. Similarly, to prove the second property, let k =−1 in the

equation T (kv) = kT (v). Finally, the third property is a direct consequence of the fact that T preserves

addition and scalar multiplication:

T (a1v1 +a2v2 + . . .+akvk) = T (a1v1)+T (a2v2)+ . . .+T (akvk)

= a1T (v1)+a2T (v2)+ . . .+akT (vk).

♠

Exercises

Exercise 10.1.1 Consider the following functions T : R3→ R2. For each of these functions T , show that

it is not linear either by showing that T does not preserve addition, or by showing that it does not preserve

scalar multiplication, or by showing that it does not preserve the zero vector.

(a) T




x

y

z


=

[
x+2y+3z+1

2y−3x+ z

]
.

(b) T




x

y

z


=

[
x+2y2 +3z

2y+3x+ z

]
.

(c) T




x

y

z


=

[
sinx+2y+3z

2y+3x+ z

]
.

Exercise 10.1.2 Consider the following functions T : R3 → R2. For each function T , show that T is a

linear transformation. Do this by showing that T is a matrix transformation, i.e., find a matrix A such that

T (v) = Av.
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(a) T




x

y

z


=

[
x+2y+3z

2y−3x+ z

]
.

(b) T




x

y

z


=

[
7x+2y+ z

3x−11y+2z

]
.

(c) T




x

y

z


=

[
3x+2y+ z

x+2y+6z

]
.

(d) T




x

y

z


=

[
2y−5x+ z

x+ y+ z

]
.

Exercise 10.1.3 Which of the following functions are linear transformations?

(a) The function f : SeqK → SeqK defined by f ((a0,a1,a2, . . .)) = (−a1,−a3,−a5, . . .). In words, the

function f removes the even-numbered elements, and negates the odd-numbered elements.

(b) The function f : M2,2→M2,2 defined by f (A)= AB. Here, M2,2 is the vector space of 2×2-matrices

with real entries, and B is a fixed matrix.

(c) The function f : M2,2→M2,2 defined by f (A) = A+B, where B is a fixed matrix.

(d) The function f : M2,2→M2,2 defined by f (A) = AT .

Exercise 10.1.4 Recall the vector space P of polynomials with coefficients in a field K. Consider the

function M : P→ P defined by M(p(x)) = xp(x).

(a) Compute M(x3), M(2x2 + x), and M(ax2 +bx+ c).

(b) Show that M is a linear transformation.

Exercise 10.1.5 Recall the vector space P of polynomials with coefficients in a field K. Consider the

function S : P→ P defined by S(p(x)) = p(x+1).

(a) Compute S(x3), S(2x2 + x), and S(ax2 +bx+ c).

(b) Show that S is a linear transformation.

Exercise 10.1.6 Consider the shift function shift : SeqK → SeqK from Example 10.5. Find a basis for the

solution space of each of the following equations:

(a) shift(a) = a.

(b) shift(a) =−a.

(c) shift(shift(a)) = shift(a)+2a.
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10.2 The algebra of linear transformations

Outcomes

A. Use algebraic properties of linear transformations to manipulate expressions.

Two linear transformations are considered to be equal if they act in the same way on all vectors. This is

the content of the following definition.

Definition 10.9: Equal transformations

Let S and T be linear transformations from V to W . We say that S and T are equal, and we write

S = T , if for all v ∈V ,

S(v) = T (v).

We now consider several operations on linear transformations. These include addition and scalar multipli-

cation of linear transformations, as well as the zero transformation.

Definition 10.10: Addition and scalar multiplication of linear transformations

Let V and W be vector spaces over a field K.

(a) The zero transformation 0 : V →W is defined by 0(v) = 0 for all v ∈V .

(b) If T ,S : V →W are linear transformations, then their sum T +S : V →W is the linear trans-

formation defined by

(T +S)(v) = T (v)+S(v)

for all v ∈V .

(c) If T : V →W is a linear transformation and k ∈ K, the linear transformation kT : V →W is

defined by

(kT )(v) = k(T (v))

for all v ∈V .

Proposition 10.11: Addition and scalar multiplication of linear transformations

If T ,S : V →W are linear transformations, then so are T +S and kT .

Proof. To show that T +S is linear, we must verify that it preserves addition and scalar multiplication. Let

v,u ∈V . Then we have

(T +S)(v+u) = T (v+u)+S(v+u) by definition of T +S,

= (T (v)+T (u))+(S(v)+S(u)) by linearity of T and S,

= (T (v)+S(v))+(T (u)+S(u)) by the associative and commutative laws of vectors,

= (T +S)(v)+(T +S)(u) by definition of T +S.
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Therefore, T +S preserves addition. Also, for v ∈V and ℓ ∈ K, we have

(T +S)(ℓv) = T (ℓv)+S(ℓv) by definition of T +S

= ℓT (v)+ ℓS(v) by linearity of T and S

= ℓ(T (v)+S(v)) by the distributive law over vector addition

= ℓ((T +S)(v)) by definition of T +S.

Therefore, T + S preserves scalar multiplication, and hence T + S is a linear transformation. The proof

that kT is a linear transformation is left as an exercise. ♠

There operations satisfy the following properties:

Proposition 10.12: Properties of addition and scalar multiplication of linear transformations

Let V ,W be vector spaces over a field K, let T ,S,R : V →W be linear transformations, and let

k,ℓ ∈ K be scalars. Then the following hold:

• Commutative law of addition: T +S = S+T .

• Associative law of addition: (T +S)+R = T +(S+R).

• The existence of an additive unit: there exists an element 0 ∈V such that for all T , T +0 = T .

• The law of additive inverses: T +(−T ) = 0.

• The distributive law over vector addition: k(T +S) = kT + kS.

• The distributive law over scalar addition: (k+ ℓ)T = kT + ℓT .

• The associative law for scalar multiplication: k(ℓT ) = (kℓ)T .

• The rule for multiplication by one: 1T = T .

But these 8 properties are just the vector space laws (A1)–(A4) and (SM1)–(SM4)! Therefore, the set of

linear transformations from V to W , with the above operations of addition and scalar multiplication, forms

a vector space.

Definition 10.13: Vector space of linear transformations

Let V ,W be vector spaces over a field K. We define LinV ,W to be the vector space of all linear

transformations from V to W , with the above operations of addition and scalar multiplication.

Another important operation is the composition of linear transformations. We have already encountered

this in Definition 6.16 for the case of Rn. Here, we generalize it to linear transformations of arbitrary

vector spaces. We also consider the identity transformation on a vector space, which forms the unit for

composition.
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Definition 10.14: Composition of linear transformations

Let V ,U ,W be vector spaces over a field K, and let S : V →U and T : U →W be linear transforma-

tions.

(a) The composition T ◦S : V →W is the linear transformation defined by

(T ◦S)(v) = T (S(v))

for all v ∈V .

(b) The identity transformation 1V : V → V is defined by 1V (v) = v for all v ∈ V . We often

omit the subscript and just write 1 : V →V when V is clear from the context.

Composition of linear transformations satisfies the following properties:

Proposition 10.15: Properties of composition of linear transformations

Composition of linear transformations satisfies the following properties, for all R,S,T as appropriate

for each law:

• Associative law of composition: (T ◦S)◦R = T ◦ (S ◦R).

• Unit laws of composition: T ◦1V = T and 1W ◦T = T , where T : V →W .

• Distributive laws: (T +S)◦R = T ◦R+S ◦R and P◦ (T +S) = P◦T +P◦S.

• Zero laws: 0◦R = 0 and R◦0 = 0.

• Compatibility with scalar multiplication: (kT )◦S = k(T ◦S) = T ◦ (kS), where k ∈ K.

Finally, we consider the notion of the inverse of a linear transformation.

Definition 10.16: Inverse of a linear transformation

Let V ,U be vector spaces over a field K, and let S : V →U and T : U→V be linear transformations.

We say that S and T are inverses if

T ◦S = 1V and S ◦T = 1U .

In this case, we also write S = T−1 and T = S−1.

Proposition 10.17: Uniqueness of inverses

Inverses are unique. In other words, if S and S′ are two inverses of T , then S = S′.

Proof. Suppose both S and S′ are inverses of T . Consider S ◦T ◦ S′. Since S and T are inverses, this is

equal to S′, but since T and S′ are inverses, it is also equal to S. Therefore, S = S′. ♠
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Proposition 10.18: Properties of inverses of linear transformations

• If S : V →U and T : U →W are both invertible, then so is T ◦S, and we have

(T ◦S)−1 = S−1 ◦T−1.

• 1−1 = 1.

• If S : V →U is invertible and k is a non-zero scalar, then

(kS)−1 = k−1S−1.

Exercises

Exercise 10.2.1 Suppose V and W are vector spaces, T ,S : V →W and R,Q : W →W are linear trans-

formations, and k is a scalar. Which of the following equalities are valid?

(a) R◦ (T + kS) = R◦T + kR◦S.

(b) (R+Q)◦ (R+Q) = R◦R+2R◦Q+Q◦Q.

(c) (R+Q)◦ (T +S) = R◦T +R◦S+Q◦T +Q◦S.

(d) If T , S, and T +S are invertible, then (T +S)−1 = T−1 +S−1.

Exercise 10.2.2 Finish the proof of Proposition 10.11, i.e., prove that if T : V →W is a linear transfor-

mation and k a scalar, then kT : V →W is a linear transformation.

10.3 Linear transformations defined on a basis

Outcomes

A. Check whether two linear transformations are equal by considering their action on a spanning

set.

B. Specify a linear transformation by considering its action on a basis.

Recall that, by definition, two linear transformations S,T : V →W are equal if and only if for all v∈V , we

have S(v) = T (v). However, this is not a very practical way of checking whether S = T , as it theoretically
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requires checking S(v) = T (v) for each one of infinitely many vectors v. The following proposition states

that it is sufficient to check the actions of S and T on a spanning set of vectors.

Proposition 10.19: Equality of linear transformations

Let V and W be vector spaces over a field K, and let S,T : V →W be linear transformations.

Moreover, let X ⊆V be a spanning set of V , i.e., such that V = spanX . If S(v) = T (v) for all v ∈ X ,

then S = T .

Proof. Assume that S(v) = T (v) holds for all v ∈ X . To show that S = T , let u ∈V be an arbitrary vector.

Since X is a spanning set, we can write u = a1v1 + . . .+anvn, for some v1, . . . ,vn ∈ X and a1, . . . ,an ∈ K.

By assumption, S(vi) = T (vi) for all i, because vi ∈ X . Then we have

S(u) = S(a1v1 + . . .+anvn)

= a1S(v1)+ . . .+anS(vn)

= a1T (v1)+ . . .+anT (vn)

= T (a1v1 + . . .+anvn)

= T (u).

Since u ∈V was arbitrary, it follows that S = T . ♠

Therefore, if we know how a linear transformation acts on a spanning set (and in particular, on a basis),

then we know how it acts on the entire space. There is also a kind of converse to this: given a basis of V ,

we can map the basis vectors to any elements of W we like, and this will always determine a unique linear

transformations. This is the content of the following theorem.

Theorem 10.20: Linear transformation defined on a basis

Suppose V and W are vector spaces over a field K. Suppose v1,v2, . . . ,vn is a basis of V , and

w1,w2, . . . ,wn are any vectors in W (which may or may not be distinct). Then there exists a unique

linear transformation T : V →W such that

T (v1) = w1, T (v2) = w2, . . . T (vn) = wn.

Proof. To show that such a linear transformation T exists, we first define a function T : V →W as follows.

Given any v ∈V , there exists a unique set of coordinates a1, . . . ,an ∈ K such that

v = a1v1 + . . .+anvn.

Then define

T (v) = a1w1 + . . .+anwn.

This defines a function T : V →W . Next, we must check that T is linear. To show that T preserves

addition, consider v,v′ ∈V , with v = a1v1 + . . .+anvn and v′ = b1v1 + . . .+bnvn. Then

T (v+v′) = T ((a1+b1)v1 + . . .+(an +bn)vn)

= (a1+b1)w1 + . . .+(an +bn)wn
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= (a1w1 + . . .+anwn)+(b1w1 + . . .+bnwn)

= T (v)+T (v′).

Therefore, T preserves addition. To show that T preserves scalar multiplication, consider v = a1v1+ . . .+
anvn and k ∈ K. Then

T (kv) = T (ka1v1 + . . .+ kanvn)

= ka1w1 + . . .+ kanwn

= k(a1w1 + . . .+anwn)

= kT (v).

Therefore, T preserves scalar multiplication. It follows that T is linear. Next, we must show that T satisfies

the condition of the theorem, i.e., that T (vi) = wi for each i. But this is clearly the case, because in this

case, ai = 1 and a j = 0 for all j 6= i. We have shown that there exists a linear function T satisfying all of

the conditions required by the theorem.

Finally, the only thing left to show is uniqueness. But this follows from Proposition 10.19. Namely, if

T ′ is another linear transformation such that T ′(vi) = wi for all i, then T and T ′ agree on v1, . . . ,vn, which

is a basis and hence a spanning set. By Proposition 10.19, T = T ′. ♠

Example 10.21: Linear transformation defined on a basis

Recall that
{

x2,(x+1)2,(x+2)2
}

is a basis of P2. Consider the linear function T : P2 → M22

defined by

T (x2) =

[
1 1

0 0

]
, T ((x+1)2) =

[
0 1

0 1

]
, T ((x+2)2) =

[
0 0

1 1

]
.

Find T (4x).

Solution. Let v1 = x2, v2 = (x+ 1)2, v3 = (x+ 2)2, w1 =
[

1 1
0 0

]
, w2 =

[
0 1
0 1

]
, and w3 =

[
0 0
1 1

]
. We

must first find a,b,c such that 4x = av1 +bv2 + cv3. We do this by solving a system of equations, using

the same method as in Example 9.12. We find that a =−3, b = 4, and c =−1. Therefore

T (4x) = T (−3v1 +4v2−v3) = −3w1 +4w2−w3 =

[
−3 1

−1 3

]
.

♠

Exercises

Exercise 10.3.1 Let T : P2→ R be a linear transformation such that

T (x2) = 1, T (x2 + x) = 5, and T (x2 + x+1) =−1.
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Find T (ax2 +bx+ c).

Exercise 10.3.2 Let vectors v1, . . . ,vn ∈ Rn and w1, . . . ,wn ∈ Rm be given. Let A be the matrix whose

columns are v1, . . . ,vn, and assume that A−1 exists. Show that there exists a linear transformation T such

that T (vi) = wi for i = 1, . . . ,n.

10.4 The matrix of a linear transformation

Outcomes

A. Find the matrix of a linear transformation with respect to general bases in vector spaces.

In Section 6.2, we saw that linear transformations T : Rn → Rm are in one-to-one correspondence with

m×n-matrices. Here, we will generalize this correspondence to arbitrary finite-dimensional vector spaces.

There is an important difference, however. While Rn comes with a natural coordinate system (i.e., every

vector in Rn has a first component, second component, and so on), there is no distinguished coordinate

system on an arbitrary vector space. To define the matrix of a linear transformation T : V →W , we must

first choose a basis, or equivalently a coordinate system, for V and for W . Different choices of basis will

give rise to different matrices.

Let V be a vector space with basis B = {v1, . . . ,vn}. Recall from Section 5.4.3 that the coordinates of

a vector v with respect to the basis B are the unique scalars a1, . . . ,an such that

v = a1 v1 + . . .+an vn.

As before, we write

[v]B =




a1
...

an




to denote the coordinates of v with respect to the basis B. We will now see how to use bases and coordinates

to encode any linear map between finite-dimensional vector spaces as a matrix.

Proposition 10.22: The matrix of a linear transformation

Let V and W be finite-dimensional vector spaces over a field K. Assume B is a basis of V and C is

a basis of W . Let T : V →W be a linear transformation. Then there exists a unique m×n-matrix A

such that for all v ∈V ,

A [v]B = [T v]C .

Moreover, A can be computed as follows: the i th column of A holds the coordinates of T (vi), where

vi is the i th vector of the basis B, and the coordinates are computed with respect to the basis C.
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Proof. Let B = {v1, . . . ,vn} and C = {w1, . . . ,wm}. By Theorem 10.20, the linear transformation T is

completely determined by the images of the basis vectors, T (v1), . . . ,T (vn) ∈W . Since {w1, . . . ,wm} is a

basis of W , we can write each T (vi) as a linear combination of w1, . . . ,wm:

T (v1) = a11w1 +a21w2 + . . .+am1wm,

T (v2) = a12w1 +a22w2 + . . .+am2wm,

· · ·
T (vn) = a1nw1 +a2nw2 + . . .+amnwm.

Let

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


 .

Then A is an m× n-matrix. We must prove that it has the desired property, i.e., that A [v]B = [T v]C, for

all v ∈ V . Since both the left-hand side and the right-hand side are linear functions of v, it suffices to

check that this property holds for basis vectors. Consider, therefore, one of the basis vectors vi. Note that

vi = 0v1 +0v2 + . . .+1vi + . . .+0vn. Therefore, the coordinates of vi with respect to the basis B are

[vi]B =




0
...
1
...
0


= ei,

where ei is the usual i th standard basis vector. On the other hand, since T (vi) = a1iw1 + . . .+amiwm, we

have

[T (vi)]C =

[
a1i
...

ami

]
= Aei.

Here, in the last equation, we have used the fact that Aei is the same thing as the i th column of A. We

therefore have [T (vi)]C = Aei = A [vi]B, as desired. ♠

Definition 10.23: The matrix of a linear transformation

The matrix A of Proposition 10.22 is called the matrix of the linear transformation T with respect

to the bases B and C. We also write

A = [T ]C,B .

Therefore,

[T ]C,B [v]B = [T v]C

for all v ∈V .

Example 10.24: Finding the matrix of a linear transformation

Find the matrix of the derivative operator D : P3→ P2 with respect to the basis B =
{

1,x,x2,x3
}

of

P3 and the basis C =
{

1,x,x2
}

of P2.
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Solution. We first find the images of each basis vector of the basis B, and we write each of them as a linear

combination of basis vectors from the basis C. Let us denote the basis vectors of B as v1 = 1, v2 = x,

v3 = x2, and v4 = x3, and the basis vectors of C as w1 = 1, w2 = x, and w3 = x2. We have

D(v1) = D(1) = 0 = 0+0x+0x2 = 0w1 +0w2 +0w3,

D(v2) = D(x) = 1 = 1+0x+0x2 = 1w1 +0w2 +0w3,

D(v3) = D(x2) = 2x = 0+2x+0x2 = 0w1 +2w2 +0w3,

D(v4) = D(x3) = 3x2 = 0+0x+3x2 = 0w1 +0w2 +3w3.

Therefore, we have

A = [D]C,B =




0 1 0 0

0 0 2 0

0 0 0 3


 .

♠

Example 10.25: Same linear transformation, different bases

Find the matrix of the derivative operator D : P3 → P2 with respect to the basis B′ ={
1,x+1,x2 + x+1,x3 + x2 + x+1

}
of P3 and the basis C′ =

{
1,x−1,x2−1

}
of P2.

Solution. This is the same linear transformation as in the previous example, but we are given different

bases. Let us denote the basis vectors of B′ as v1 = 1, v2 = x+1, v3 = x2+x+1, and v4 = x3+x2 +x+1,

and the basis vectors of C′ as w1 = 1, w2 = x−1, and w3 = x2−1. We must write each D(vi) as a linear

combination of w1, w2, and w3, which requires solving a system of linear equations for each of them. We

have:
D(v1) = D(1) = 0 = 0w1 +0w2 +0w3,

D(v2) = D(x+1) = 1 = 1w1 +0w2 +0w3,

D(v3) = D(x2 + x+1) = 2x+1 = 3w1 +2w2 +0w3,

D(v4) = D(x3 + x2 + x+1) = 3x2 +2x+1 = 6w1 +2w2 +3w3.

Therefore, the matrix is

[D]C′,B′ =




0 1 3 6

0 0 2 2

0 0 0 3


 .

♠

The last two examples illustrate that a linear transformation can have many different matrices, because the

matrix depends not only on the linear transformation, but also on the given bases. The art of linear algebra

often lies in choosing “convenient” bases for a given application. Often, a “convenient” basis is one that

gives rise to simple matrices, for example, matrices containing many zeros, or matrices that are diagonal.
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Example 10.26: Finding a convenient basis

Let T : P3→M2,2 be the linear transformation defined by

T (ax3 +bx2 + cx+d) =

[
a+d b− c

b+ c a−d

]

for all ax3 +bx2 + cx+d ∈ P3. Let B =
{

x3,x2,x,1
}

and

C =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}

be bases of P3 and M2,2, respectively.

(a) Find [T ]C,B.

(b) Find a basis C′ of M2,2 such that [T ]C′,B is the identity matrix.

Solution. (a) We have

T (x3) =

[
1 0

0 1

]
= 1

[
1 0

0 0

]
+0

[
0 1

0 0

]
+0

[
0 0

1 0

]
+1

[
0 0

0 1

]
,

T (x2) =

[
0 1

1 0

]
= 0

[
1 0

0 0

]
+1

[
0 1

0 0

]
+1

[
0 0

1 0

]
+0

[
0 0

0 1

]
,

T (x) =

[
0 −1

1 0

]
= 0

[
1 0

0 0

]
−1

[
0 1

0 0

]
+1

[
0 0

1 0

]
+0

[
0 0

0 1

]
,

T (1) =

[
1 0

0 −1

]
= 1

[
1 0

0 0

]
+0

[
0 1

0 0

]
+0

[
0 0

1 0

]
−1

[
0 0

0 1

]
.

Therefore,

[T ]C,B =




1 0 0 1

0 1 −1 0

0 1 1 0

1 0 0 −1


 .

(b) Since the matrices T (x3), T (x2), T (x), and T (1) form a basis of M2,2, we can take C′ to consist of

these four matrices, i.e.,

C′ =
{[

1 0

0 1

]
,

[
0 1

1 0

]
,

[
0 −1

1 0

]
,

[
1 0

0 −1

]}
.

Then

[T ]C′,B =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




is the identity matrix. ♠
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We end this section with some properties of matrices of linear transformations.

Proposition 10.27: Properties of matrices of linear transformations

Let V , W , and U be finite-dimensional vector spaces with respective bases B, C, and D. Suppose

T ,T ′ : V →W and S : W →U are linear transformations. The following hold:

(a) [S ◦T ]D,B = [S]D,C [T ]C,B.

(b) [1V ]B,B = I.

(c) T is invertible if and only if [T ]C,B is invertible, and in that case,
[
T−1

]
B,C

= ([T ]C,B)
−1.

(d) [0]C,B = 0.

(e) [T +T ′]C,B = [T ]C,B +[T ′]C,B.

(f) [kT ]C,B = k [T ]C,B.

Exercises

Exercise 10.4.1 Let B =

{[
2

−1

]
,

[
3

2

]}
be a basis of R2 and let x =

[
5

−7

]
be a vector in R2. Find

[x]B.

Exercise 10.4.2 Let B =








1

−1

2


 ,




2

1

2


 ,



−1

0

2





 be a basis of R3 and let x =




5

−1

4


 be a vector

in R2. Find [x]B.

Exercise 10.4.3 Suppose T : R3→ R3 is a linear transformation such that

T




1

0

0


=




3

3

3


 , T




0

1

0


=




1

2

3


 , T




0

0

1


=




1

3

−1


 .

Let E = {e1,e2,e3} be the standard basis of R3, and let

B = {v1,v2,v3}=








1

0

0


 ,




1

1

0


 ,




2

1

1







be another basis.

(a) Find the matrix of T with respect to E, i.e., find [T ]E,E .
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(b) Find [T ]B,B.

Exercise 10.4.4 Let T : R2→ R2 be a linear transformation defined by

T

([
a

b

])
=

[
a+b

a−b

]
.

Consider the two bases

B1 =

{[
1

0

]
,

[
−1

1

]}

and

B2 =

{[
1

1

]
,

[
1

−1

]}
.

Find the matrix MB2,B1
of T with respect to the bases B1 and B2.

Exercise 10.4.5 Let M =

[
1 2

−2 1

]
, and consider the linear transformation T : M2,2→M2,2 given by

T (A) = MAM. Find the matrix of T with respect to the basis

B =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]
.

}

Exercise 10.4.6 Consider the linear transformation T : P3→ P3 given by T (p(x))= p(x+1). Find [T ]B,B,

where B =
{

1,x,x2,x3
}

.

Exercise 10.4.7 Let v =




1

−2

3


 and consider the linear function T (w) = projv(w). Find the matrix of

T with respect to the standard basis of R3.

Exercise 10.4.8 Let v =




1

−2

3


 and consider the linear function T (w) = projv(w). Find the matrix of

T with respect to the basis

B = {v1,v2,v3}=








1

−2

3


 ,




2

1

0


 ,




3

0

1





 .

Exercise 10.4.9 Suppose that V and W are finite-dimensional vector spaces with bases B and C, respec-

tively. Let T : V →W be a linear transformation such that

T (vi) = wi

for i = 1, . . . ,n. Let M be the matrix whose columns are [v1]B , . . . , [vn]B, and let N be the matrix whose

columns are [w1]C , . . . , [wn]C. Suppose that M is invertible. Show that [T ]C,B = NM−1.



11. Inner product spaces

One structure that we often use in Rn, but which is missing from abstract vector spaces, is the dot product.

In Chapter 2, we saw how to use dot products to compute the length of a vector, the angle between two

vectors, and to decide when two vectors are orthogonal. We also used dot products to define the projection

of one vector onto another, and to find shortest distances between various objects (such as points and

planes, two lines, etc).

In this chapter, we will consider inner product spaces. An inner product space is essentially an abstract

vector spaces that has been equipped with an operation that works “like” the dot product.

11.1 Real inner product spaces

Outcomes

A. Check whether an operation is an inner product.

B. Give an example of a vector space on which more than one inner product can be defined.

C. Calculate the inner product of vectors in various examples of inner product spaces.

D. Calculate the norm of a vector and the angle between two vectors.

E. Use the Cauchy-Schwarz inequality and the triangle inequality to reason about the size of

inner products and norms of vectors.

In this section, we fix K to be the field of real numbers.

Definition 11.1: Real inner product space

A (real) inner product space is a real vector space V equipped with an operation that assigns to

any pair of vectors u,v∈V a real number 〈u,v〉, called the inner product of u and v. This operation

must satisfy the following properties:

1. Symmetry: 〈u,v〉= 〈v,u〉.

2. Linearity: 〈u,kv+ ℓw〉= k〈u,v〉+ ℓ〈u,w〉.

3. The positive definite property: 〈u,u〉 ≥ 0, and moreover, 〈u,u〉= 0 if and only if u = 0.

387
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Example 11.2: Rn with the usual dot product

V = Rn, with the usual dot product

〈u,v〉= u·v = u1v1 + . . .+unvn

is an inner product space.

Proof. The relevant properties were shown in Proposition 2.25. ♠
There exist other inner product operations on Rn besides the dot product. The following is an example.

Example 11.3: R2 with a non-standard inner product

Let V = R2, and consider the matrix A =

[
1 1

1 2

]
. Define an operation 〈−,−〉 by

〈u,v〉= uT Av =
[

u1 u2

][ 1 1

1 2

][
v1

v2

]
= u1v1 +u1v2 +u2v1 +2u2v2.

Then R2, with this operation, is an inner product space.

Proof. We must show the three properties are satisfied. For symmetry, note that a scalar is equal to its own

transpose. Therefore

〈u,v〉 = uT Av = (uT Av)T = vT AT u.

But this is equal to 〈v,u〉 because A is a symmetric matrix, i.e., AT = A. For linearity, note that, by

properties of matrix multiplication,

〈u,kv+ ℓw〉 = uT A(kv+ ℓw) = kuT Av+ ℓuT Aw = k〈u,v〉+ ℓ〈u,w〉.
For the positive definite property, we have

〈u,u〉 = u2
1 +2u1u2 +2u2

2 = (u2
1 +2u1u2 +u2

2)+u2
2 = (u1 +u2)

2 +u2
2 ≥ 0,

because the sum of two squares is always non-negative. Moreover, if equality holds in the last equation,

then we must have u1 +u2 = 0 and u2 = 0, and this is only possible if u = 0. ♠

Example 11.4: Continuous functions on an interval

Let a < b be real numbers, and let

[a,b] = {x | a≤ x≤ b}

be the closed interval. Let V =C[a,b] be the vector space of all continuous functions f : [a,b]→R.

Given two functions f ,g ∈C[a,b], define

〈 f ,g〉=
∫ b

a
f (x)g(x)dx.

This is an inner product.
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Proof. This follows from well-known properties of integrals. For symmetry, we have

〈 f ,g〉 =
∫ b

a
f (x)g(x)dx =

∫ b

a
g(x) f (x)dx = 〈g, f 〉.

For linearity, we have

〈 f ,kg+ ℓh〉 =
∫ b

a
f (x)(kg(x)+ ℓh(x))dx = k

∫ b

a
f (x)g(x)dx+ ℓ

∫ b

a
f (x)h(x)dx = k〈 f ,g〉+ ℓ〈 f ,h〉.

For the positive definite property, we have

〈 f , f 〉=
∫ b

a
f (x)2 dx≥ 0.

This is≥ 0 because a < b and the integral over a non-negative function is non-negative. Moreover, since f

is continuous, we know from calculus that the last integral can only be equal to 0 if f is the constant zero

function. ♠

Example 11.5: Polynomials

Let P be the vector space of polynomials (of any degree) with real coefficients. Let a < b be real

numbers, and consider the inner product defined by

〈p,q〉=
∫ b

a
p(x)q(x)dx.

This is an inner product space.

Proof. The proof is the same as for C[a,b]. ♠

Example 11.6: Real Hilbert space

Let HilbR be the vector space of all infinite sequences of real numbers a = (a0,a1,a2, . . .) satisfying

a2
0 +a2

1 +a2
2 + . . . < ∞.

These are called the square summable sequences. (One needs to do a little bit of work to show that

it is indeed a vector space; in particular, to show that the sum of two square summable sequences is

square summable.) On this space, we can define an inner product as follows:

〈a,b〉= a0b0 +a1b1 +a2b2 + . . . .

The details will be worked out in Exercise 11.1.6. This inner product space is called (real) Hilbert

space.

We now look at some properties of inner products. The first thing to note is that while the axioms require

linearity in the right component, symmetry ensures that linearity in the left component also holds.
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Proposition 11.7: Left linearity

Let V be an inner product space. Then 〈ku+ ℓv,w〉= k〈u,w〉+ ℓ〈v,w〉.

Proof. This follows directly from symmetry. We have

〈ku+ ℓv,w〉= 〈w,ku+ ℓv〉= k〈w,u〉+ ℓ〈w,v〉= k〈u,w〉+ ℓ〈v,w〉.

♠

We also note that as a consequence of right linearity, we have 〈u,0〉 = 0. This can be seen by letting

k = ℓ= 0 in the equation for right linearity. Similarly, 〈0,w〉= 0 follows from left linearity.

Another important property of inner products is the Cauchy-Schwarz inequality. We have already

encountered this in the context of the dot product in Section 2.6.

Theorem 11.8: Cauchy-Schwarz inequality

Let u,v be vectors in an inner product space. Then

〈u,v〉2 ≤ 〈u,u〉 · 〈v,v〉. (11.1)

Proof. The proof is almost identical to that of Proposition 2.27. First note that if u = 0, then both sides of

(11.1) are equal to zero, and so there is nothing to show. Therefore, we will assume in what follows that

u 6= 0. Define a function of t ∈ R by

f (t) = 〈tu+v, tu+v〉.

Then by the positive definite property, we know that f (t) ≥ 0 for all t ∈ R. Also from linearity and

symmetry, we have

f (t) = 〈tu, tu+v〉+ 〈v, tu+v〉
= t2〈u,u〉+ t〈u,v〉+ t〈v,u〉+ 〈v,v〉
= t2〈u,u〉+2t〈u,v〉+ 〈v,v〉.

This means the graph of y = f (t) is a parabola which opens upwards and is never negative. It follows

that this function has at most one root. From the quadratic formula, we know that a quadratic function

at2+bt +c has one or zero roots if and only if b2−4ac≤ 0. Applying this reasoning to the function f (t),
we obtain

(2〈u,v〉)2−4〈u,u〉〈v,v〉< 0,

which is equivalent to 〈u,v〉2 ≤ 〈u,u〉 · 〈v,v〉. ♠

We can use the inner product to define the norm of a vector.

Definition 11.9: Norm

Let u be a vector in an inner product space. Then the norm of u is defined as

‖u‖=
√
〈u,u〉.
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Example 11.10: Norm in C[−1,1]

Calculate the norm of f (x) = x2 in C[−1,1].

Solution. In the vector space C[−1,1], the inner product is defined as

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

We therefore have

〈 f , f 〉=
∫ 1

−1
f (x)2 dx =

∫ 1

−1
x4 dx =

[
1

5
x5

]1

−1

=
2

5
.

Therefore, ‖ f‖=
√
〈 f , f 〉=

√
2
5 . ♠

A vector u in an inner product space is called normalized or a unit vector if ‖u‖= 1. We note that if v is

any non-zero vector in an inner product space, then

u =
1

‖v‖v

is normalized.

By the Cauchy-Schwarz inequality, we have the following properties:

Proposition 11.11: Inner product and norm

Let u,v be vectors in an inner product space. Then

|〈u,v〉| ≤ ‖u‖‖v‖ .

Proof. The Cauchy-Schwarz inequality states that 〈u,v〉2 ≤ ‖u‖2‖v‖2. The claim follows by taking the

square root of both sides of the equation. ♠

Proposition 11.12: Triangle inequality

Let u,v be vectors in an inner product space. Then

‖u+v‖ ≤ ‖u‖+‖v‖ .

This is called the triangle inequality.

Proof. The proof is essentially the same as that of Proposition 2.28. We have

‖u+v‖2 = 〈u+v,u+v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= ‖u‖2 +2〈u,v〉+‖v‖2
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≤ ‖u‖2 +2 |〈u,v〉|+‖v‖2

≤ ‖u‖2 +2‖u‖‖v‖+‖v‖2

= (‖u‖+‖v‖)2.

The triangle inequality follows by taking square roots of both sides. ♠

Generalizing the situation in Rn, we can define the angle between any two vectors in an inner product

space. Note that by the Cauchy-Schwarz inequality,

|〈u,v〉|
‖u‖‖v‖ ≤ 1,

and therefore,

−1≤ 〈u,v〉
‖u‖‖v‖ ≤ 1.

This ensures that the following definition is well-defined.

Definition 11.13: Angle between two vectors

Let u,v be vectors in an inner product space. The angle between u and v is, by definition, the unique

θ such that 0≤ θ ≤ π and

cosθ =
〈u,v〉
‖u‖‖v‖ .

Example 11.14: Find the angle between two vectors

Find the angle between 1 and x2 in C[−1,1].

Solution. We have

〈1,1〉 =

∫ 1

−1
1 ·1dx = 2,

〈x2,x2〉 =

∫ 1

−1
x2 · x2 dx =

2

5
,

〈1,x2〉 =
∫ 1

−1
1 · x2 dx =

2

3
.

Therefore

cosθ =
〈1,x2〉
‖1‖‖x2‖ =

2
3√

2
√

2
5

=

√
5

3
.

The angle θ is cos−1(
√

5
3 ), which is approximately 0.7297 radians or 41.81 degrees.

♠
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Exercises

Exercise 11.1.1 For each matrix A, determine whether the formula 〈u,v〉 = uT Av determines an inner

product on R2.

(a) A =

[
1 0

0 2

]
, (b) A =

[
3 1

1 3

]
, (c) A =

[
1 1

0 2

]
, (d) A =

[
1 0

0 −1

]
, (e) A =

[
1 1

1 1

]
.

Exercise 11.1.2 Consider the inner product space C[0,1] as in Example 11.4. Compute the following

inner products:

(a) 〈1,x〉, (b) 〈x,x2〉, (c) 〈1+ x,2+ x2〉.

Exercise 11.1.3 Consider the inner product space C[0,1] as in Example 11.4. Compute the following

norms:

(a) ‖1‖ , (b) ‖x‖ , (c)
∥∥x2 +1

∥∥ .

Exercise 11.1.4 For u,v vectors in R3, define the product u∗v = u1v1 +2u2v2 +3u3v3. Show that

|u∗v| ≤ (u∗u)1/2(v∗v)1/2.

Hint: first show that the operation 〈u,v〉= u∗v is an inner product on R3, then use Proposition 11.11.

Exercise 11.1.5 In C[−1,1], find (a) the angle between x and x2, (b) the angle between x and x3.

Exercise 11.1.6 . In this exercise, we will work out the details of Example 11.6. We must show that HilbR

is a vector space. We will do this by showing that it is a subspace of SeqR. Further, we must show that the

inner product is well-defined. This requires some knowledge of convergent series from calculus.

(a) Assume a = (a0,a1, . . .) and b = (b0,b1, . . .) are square summable sequences. Show that the series

a0b0 +a1b1 +a2b2 + . . . converges to a real number. Hint: consider the series |a0b0|+ |a1b2|+ . . .
and use the Cauchy-Schwarz inequality and the absolute convergence test.

(b) Using the result of part (a), show that HilbR is a subspace of SeqR.

(c) Show that the operation 〈a,b〉= a0b0 +a1b1 +a2b2 + . . . is an inner product on HilbR.
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11.2 Orthogonality

Outcomes

A. Determine whether two vectors in an inner product space are orthogonal.

B. Find the orthogonal complement of a set of vectors.

C. Determine whether a set of vectors is orthogonal and/or orthonormal.

D. Check whether a basis is orthogonal and/or orthonormal.

E. Calculate the Fourier coefficients of a vector with respect to an orthogonal basis.

Definition 11.15: Orthogonality

Let u and v be vectors in an inner product space. We say that u and v are orthogonal if

〈u,v〉= 0.

We also write u⊥ v to indicate that u and v are orthogonal.

We note that the zero vector 0 is orthogonal to all vectors, because 〈u,0〉 = 0 follows from the linearity

of the inner product. We also note that u ⊥ v if and only if v ⊥ u; this follows from the symmetry of the

inner product.

Definition 11.16: Orthogonal complement

Let S be a subset of an inner product space V . The orthogonal complement of S is the set

S⊥ = {v ∈V | 〈v,w〉= 0 for all w ∈ S } .

Proposition 11.17: Orthogonal complement

If S is any subset of an inner product space V , then S⊥ is a subspace.

Proof. We clearly have 0 ∈ S⊥, because 0 is orthogonal to all vectors. To show that S⊥ is closed under

addition, assume v,v′ ∈ S⊥. We have to show v+v′ ∈ S⊥. So take an arbitrary w ∈ S. Then we have

〈v+v′,w〉= 〈v,w〉+ 〈v′,w〉= 0+0 = 0.

Therefore, v+v′ ∈ S⊥. Finally, to show that S⊥ is closed under scalar multiplication, assume v ∈ S⊥ and

k ∈ R. We have to show kv ∈ S⊥. So take an arbitrary w ∈ S. Then we have

〈kv,w〉= k〈v,w〉= k0 = 0.
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Therefore, kv ∈ S⊥. It follows that S⊥ is a subspace of V . ♠

Here is an illustration of a subspace S of R3 and its orthogonal complement S⊥:

S

S⊥

Example 11.18: Orthogonal complement

Consider the inner product space P3 of polynomials of degree at most 3, with the inner product

defined by

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

Find the orthogonal complement of
{

x2
}

.

Solution. We have to compute the set of all polynomials of the form p(x) = ax3 + bx2 + cx+ d that are

orthogonal to x2. So let us compute the inner product:

〈p(x),x2〉 =

∫ 1

−1
(ax3 +bx2 + cx+d)x2 dx

=
∫ 1

−1
ax5 +bx4 + cx3 +dx2 dx

= 0a+
2

5
b+0c+

2

3
d.

Setting this equal to 0, we see that 〈p(x),x2〉= 0 if and only if 2
5b+ 2

3d = 0, or equivalently, 3b+5d = 0.

The basic solutions are



a

b

c

d


=




1

0

0

0


 ,




a

b

c

d


=




0

5

0

−3


 ,




a

b

c

d


=




0

0

1

0


 ,

giving the following basis for the space of polynomials orthogonal to x2:

{
x3, 5x2−3, x

}
.

♠

We now consider orthogonal sets and bases.
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Definition 11.19: Orthogonal and orthonormal sets of vectors

A set of vectors {u1, . . . ,uk} in an inner product space is called an orthogonal set if the vectors are

non-zero and pairwise orthogonal, i.e., for all i, ui 6= 0 and for all i 6= j, ui ⊥ u j.

Moreover, the set of vectors {u1, . . . ,uk} is called orthonormal if it is orthogonal and each vector

is normalized, i.e., ‖ui‖= 1.

The interest of orthogonal and orthonormal sets of vectors lies, among other things, in the fact that they

are automatically linearly independent.

Proposition 11.20: Orthogonal set is linearly independent

If {u1, . . . ,uk} is an orthogonal set of vectors, then u1, . . . ,uk are linearly independent.

Proof. Assume {u1, . . . ,uk} is an orthogonal set. To show that u1, . . . ,uk are linearly independent, assume

a1u1 + . . .+akuk = 0.

We must show that a1, . . . ,ak = 0. So pick some i ∈ {1, . . . ,k}. We compute

〈ui,a1u1 + . . .+akuk〉 = a1〈ui,u1〉+ . . .+ai〈ui,ui〉+ . . .+ak〈ui,uk〉
= 0+ . . .+ai〈ui,ui〉+ . . .+0

= ai〈ui,ui〉.

On the other hand,

〈ui,a1u1 + . . .+akuk〉= 〈ui,0〉= 0.

It follows that ai〈ui,ui〉 = 0. Since 〈ui,ui〉 6= 0, it follows that ai = 0. Since the choice of i was arbitrary,

it follows that a1, . . . ,ak = 0, and u1, . . . ,uk are linearly independent. ♠

Example 11.21: An orthogonal set of functions

Consider the inner product space C[0,2π ]. The following functions form an (infinite) orthogonal

set:

g0(x) = 1

f1(x) = sinx

g1(x) = cosx

f2(x) = sin2x

g2(x) = cos2x

...

fk(x) = sinkx

gk(x) = coskx

...
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Proof. We have to check that any two functions are orthogonal to each other. This is true because of

trigonometric identities. We have the following trigonometric formulas:

sinα sinβ =
1

2
(cos(α−β )− cos(α +β )),

cosα cosβ =
1

2
(cos(α−β )+ cos(α +β )),

sinα cosβ =
1

2
(sin(α−β )+ sin(α +β )).

Using these, we can compute the relevant inner products. Assume i 6= j. Then

〈gi,g j〉 =
∫ 2π

0
cos(ix)cos( jx)dx

=
1

2

∫ 2π

0
cos((i− j)x)+ cos((i+ j)x)dx

=
1

2

[
1

(i− j)
sin((i− j)x)+

1

(i+ j)
sin((i+ j)x)

]2π

0

= 0,

and therefore gi ⊥ g j. The proofs of fi ⊥ f j and fi ⊥ g j are similar. ♠

Definition 11.22: Orthogonal and orthonormal bases

Let V be an inner product space, and let W be a subspace of V . We say that {u1, . . . ,uk} is an

orthogonal basis for W if it is an orthogonal set and spans W .

If, moreover, each ui is normalized, we say that {u1, . . . ,uk} is an orthonormal basis for W .

We note that, by Proposition 11.20, every orthogonal (or orthonormal) basis is automatically linearly

independent, and therefore an actual basis of W .

Example 11.23: Orthogonal, orthonormal, and non-orthogonal bases

Consider R2 as an inner product space with the usual dot product.

•

{[
1

0

]
,

[
0

1

]}
is an orthonormal basis of R2.

•

{
1√
2

[
1

1

]
, 1√

2

[
1

−1

]}
is an orthonormal basis of R2.

•

{[
2

0

]
,

[
0

3

]}
is an orthogonal basis of R2, but not orthonormal.

•

{[
1

1

]
,

[
1

−1

]}
is an orthogonal basis of R2, but not orthonormal.

•

{[
1

0

]
,

[
1

1

]}
is a basis of R2, but neither orthogonal nor orthonormal.
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So why are we interested in orthogonal and orthonormal bases? The main reason is that finding coordinates

is much easier when the bases are orthogonal (and even better when they are orthonormal). We have the

following property:

Proposition 11.24: Fourier coefficients

Let B = {u1, . . . ,un} be an orthogonal basis of some space W , and suppose v ∈W . Then

v = a1u1 + . . .+anun,

where

ai =
〈ui,v〉
〈ui,ui〉

.

In this situation, the coordinates a1, . . . ,an are also called the Fourier coefficients of v (with respect

to the orthogonal basis B).

In case B is an orthonormal basis, the formula is even simpler. In that case:

ai = 〈ui,v〉.

Proof. Since B is a basis of W , we know that there exist coefficients a1, . . . ,an such that v = a1u1 + . . .+
anun. It remains to verify that the coefficients satisfy the required formula. This is a simple calculation.

We have

〈ui,v〉 = 〈ui,a1u1 + . . .+anun〉
= a1〈ui,u1〉+ . . .+ai〈ui,ui〉+ . . .+an〈ui,un〉
= 0+ . . .+ai〈ui,ui〉+ . . .+0

= ai〈ui,ui〉.

Since ui 6= 0, we have 〈ui,ui〉 6= 0 by the positive definite property. We can therefore divide both sides of

the equation by 〈ui,ui〉 to obtain

ai =
〈ui,v〉
〈ui,ui〉

,

as desired. Finally, if the basis is orthonormal, then 〈ui,ui〉 = 1, and the denominator disappears, so that

ai = 〈ui,v〉. ♠

Example 11.25: Fourier coefficients

Suppose B = {u1,u2,u3} is an orthogonal basis for an inner product space V , such that ‖u1‖ = 1,

‖u2‖=
√

2, and ‖u3‖= 2. Moreover, suppose that v ∈V is a vector such that 〈u1,v〉= 3, 〈u2,v〉=
−1, and 〈u3,v〉= 2. Find the coordinates of v with respect to B.

Solution. We have to find a1,a2,a3 such that

v = a1u1 +a2u2 +a3u3.
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We have sufficient information to compute a1,a2,a3. Namely,

a1 =
〈u1,v〉
〈u1,u1〉

=
〈u1,v〉
‖u1‖2

=
3

1
= 3,

a2 =
〈u2,v〉
〈u2,u2〉

=
〈u2,v〉
‖u2‖2

=
−1

2
= −0.5,

a3 =
〈u3,v〉
〈u3,u3〉

=
〈u3,v〉
‖u3‖2

=
2

4
= 0.5.

♠

Proposition 11.24 shows that if {u1, . . . ,un} is an orthogonal basis, then we can solve v= a1u1+ . . .+anun

without having to solve a system of equations. While this is a useful thing to be able to do, perhaps it is

merely a convenience (solving a system of equations would also be fine). However, there is another very

useful property of Fourier coefficients. The coefficient ai only depends on the basis vector ui, and not on

any of the other basis vectors. This is useful in situations where only part of an orthogonal basis is known.

We can calculate the corresponding coefficients without having to know the rest of the basis.

Example 11.26: Finding partial coordinates

Suppose B = {u1,u2,u3,u4} is an orthogonal basis of R4. We have been told that

u1 =




1

2

−1

0


 and u2 =




0

1

2

3


 ,

but it is not known what u3 and u4 are. Find the first two coordinates of the vector

v =




1

0

2

0




with respect to the basis B.

Solution. We have v = a1u1 +a2u2 +a3u3 +a4u4, where

a1 =
〈u1,v〉
〈u1,u1〉

=
−1

6
and a2 =

〈u2,v〉
〈u2,u2〉

=
4

14
.

So the first two coordinates are −1
6 and 2

7 . ♠
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A word of warning is in order: Fourier coefficients do not work when the basis is not orthogonal. Consider

the following picture, where u1 and u2 are not orthogonal.

a1

a2

u1

u2
v

The coordinates of v with respect to u1,u2 are (2,1), because v = 2u1 +1u2, as indicated by the shaded

parallelogram. On the other hand, the formula for the Fourier coefficients is concerned with the orthogonal

projections of v onto u1 and u2, as indicated by the dashed lines. It yields the coefficients

a1 =
〈u1,v〉
〈u1,u1〉

≈ 2.5,

a2 =
〈u2,v〉
〈u2,u2〉

≈ 1.8.

These are not the same as the coordinates of v, because the dashed lines are orthogonal to u1 and u2,

instead of parallel to them. In summary, the Fourier coefficients of a vector are equal to its coordinates

only if the basis is orthogonal.

When u1, . . . ,uk are orthogonal, we have a convenient formula for the norm of a1u1 + . . .+akuk:

Proposition 11.27: Norm of orthogonal linear combination

Let V be an inner product space, and suppose that u1, . . . ,uk are orthogonal. Then

‖a1u1 + . . .+akuk‖2 = a2
1‖u1‖2 + . . .+a2

k ‖uk‖2 .

Proof. We have

‖a1u1 + . . .+akuk‖2 = 〈a1u1 + . . .+akuk,a1u1 + . . .+akuk〉
= a2

1〈u1,u1〉 + a1a2〈u1,u2〉 + . . . + a1an〈u1,un〉
+ a2a1〈u2,u1〉 + a2

2〈u2,u2〉 + . . . + a2an〈u2,un〉
+

...
...

...

+ ana1〈un,u1〉 + ana2〈un,u2〉 + . . . + a2
n〈un,un〉

= a2
1 ‖u1‖2 + . . .+a2

k ‖uk‖2 .

Here we have used the fact that 〈ui,u j〉= 0 when i 6= j. ♠

We conclude this section by making a connection between arbitrary inner products and dot products. Once

an orthonormal basis has been chosen on an inner product space, computing inner products is essentially

the same as computing dot products. The following proposition makes this more precise.
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Proposition 11.28: Inner product and dot product

Let V be an inner product space, and suppose that B = {u1, . . .un} is an orthonormal basis. Then

for any pair of vectors v,w ∈ V , their inner product is equal to the dot product of their coordinate

vectors with respect to the basis B, i.e.

〈v,w〉= [v]B·[w]B .

Proof. By definition of coordinate vectors, we have

[v]B =




a1
...

an


 and [w]B =




b1
...

bn


 ,

where v = a1u1 + . . .+anun and w = b1u1 + . . .+bnun. We calculate

〈v,w〉 = 〈a1u1 + . . .+anun,b1u1 + . . .+bnun〉
= a1b1〈u1,u1〉 + a1b2〈u1,u2〉 + . . . + a1bn〈u1,un〉

+ a2b1〈u2,u1〉 + a2b2〈u2,u2〉 + . . . + a2bn〈u2,un〉
+

...
...

...

+ anb1〈un,u1〉 + anb2〈un,u2〉 + . . . + anbn〈un,un〉
= a1b1 +a2b2 + . . .+anbn

= [v]B·[w]B .

Here we have used the fact that 〈ui,u j〉= 1 when i = j and 〈ui,u j〉= 0 otherwise, which holds because B

is orthonormal. ♠

Exercises

Exercise 11.2.1 Let A =




1 1 0

1 2 0

0 0 2


, and consider R3 with the inner product given by 〈u,v〉 = uT Av.

Which of the following vectors are orthogonal to each other?

u1 =




1

1

1


 , u2 =



−1

2

−2


 , u3 =




7

−5

−2


 , u4 =




10

−2

−7


 .

Exercise 11.2.2 On C[−1,1], which of the following functions are orthogonal to each other?

f1(x) = x, f2(x) = x2, f3(x) = x3− x, f4(x) = 1− x4.
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Exercise 11.2.3 Consider the inner product space P3 of polynomials of degree at most 3, with the inner

product defined by

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

(a) Find the orthogonal complement of
{

x2,x
}

.

(b) Find the orthogonal complement of {x+1}.

Exercise 11.2.4 Consider R3 as an inner product space with the usual dot product. For each of the

following bases of R3, state whether it is orthonormal, orthogonal, or neither.

(a)








1

0

0


 ,




0

1

0


 ,




0

0

1





.

(b)








1

0

1


 ,




0

1

1


 ,




0

0

1





.

(c)








1

0

2


 ,




0

1

0


 ,



−2

0

1





.

(d)








3
5
4
5

0


 ,




0

0

−1


 ,




4
5

−3
5

0








.

Exercise 11.2.5 Suppose B = {u1,u2,u3} is an orthogonal basis for an inner product space V , such that

‖u1‖ = 2, ‖u2‖ =
√

3, and ‖u3‖ =
√

5. Moreover, suppose that v ∈ V is a vector such that 〈v,u1〉 = 1,

〈v,u2〉= 2, and 〈v,u3〉=−4. Find the coordinates of v with respect to B.

Exercise 11.2.6 Suppose B = {u1,u2,u3} is an orthogonal basis of R3. We have been told that

u1 =




1

1

0


 ,

but it is not known what u2 and u3 are. Find the first coordinate of the vector

v =




1

0

2




with respect to the basis B.
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11.3 The Gram-Schmidt orthogonalization procedure

Outcomes

A. Use the Gram-Schmidt procedure to find an orthogonal basis of a subspace of an inner product

space.

B. Find an orthonormal basis of a subspace.

Although we have already seen some potential uses for orthogonal bases, we have not yet seen very many

examples of such bases. In this section, we will look at the Gram-Schmidt orthogonalization procedure, a

method for turning any basis into an orthogonal one.

The basic idea is very simple: if two vectors v1,v2 are not orthogonal, then we can make them orthog-

onal by replacing v2 by a vector of the form u2 = v2− tv1, for a suitable parameter t.

v1 v2

u2 = v2− tv1

But what is the correct value of t? It turns out that this value is uniquely determined by the requirement

that v1 and u2 must be orthogonal. We calculate

〈v1,u2〉 = 〈v1,v2− tv1〉 = 〈v1,v2〉− t〈v1,v1〉.
Setting this equal to 0 yields the unique solution

t =
〈v1,v2〉
〈v1,v1〉

Note that this is exactly the same thing as the Fourier coefficient of v2 in the direction of v1. The following

proposition summarizes what we have found so far. For consistency with our later notation, we also

rename the first basis vector v1 to u1.

Proposition 11.29: Gram-Schmidt orthogonalization procedure for 2 vectors

Let {v1,v2} be a basis for some subspace W of an inner product space V . Define vectors u1,u2 as

follows:

u1 = v1,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1.

Then {u1,u2} is an orthogonal basis of W .
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Example 11.30: Gram-Schmidt orthogonalization procedure for 2 vectors

In R3 with the usual dot product, find an orthogonal basis for

span








1

1

0


 ,




0

1

1





 .

Solution. Let v1 =




1

1

0


 and v2 =




0

1

1


. We calculate

u1 = v1 =




1

1

0


 ,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1 =




0

1

1


 − 1

2




1

1

0


 =



−1/2

1/2

1


 .

Therefore the desired orthogonal basis is








1

1

0


 ,



−1/2

1/2

1





. ♠

The procedure for finding an orthogonal basis of a k-dimensional space is very similar. We adjust each

basis vector vi by subtracting a suitable linear combination of previous orthogonal basis vectors.

Proposition 11.31: Gram-Schmidt orthogonalization procedure for k vectors

Let {v1, . . . ,vk} be a basis for some subspace W of an inner product space V . Define vectors

u1, . . . ,uk as follows:

u1 = v1,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1,

u3 = v3 −
〈u1,v3〉
〈u1,u1〉

u1 −
〈u2,v3〉
〈u2,u2〉

u2,

...

uk = vk −
〈u1,vk〉
〈u1,u1〉

u1 −
〈u2,vk〉
〈u2,u2〉

u2 − . . . − 〈uk−1,vk〉
〈uk−1,uk−1〉

uk−1.

Then {u1, . . . ,uk} is an orthogonal basis of W .

Proof. First, it is clear that {v1, . . . ,vk} and {u1, . . . ,uk} span the same subspace, as each vi is a linear

combination of u1, . . . ,ui and conversely, each ui is a linear combination of v1, . . . ,vi. So the only thing

we must check is that {u1, . . . ,uk} is an orthogonal set. In other words, we must show that 〈u j,ui〉= 0 for
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all j < i. We prove this by induction on i, i.e., we assume it is already true for all pairs of indices smaller

than i. To show 〈u j,ui〉= 0, we calculate:

〈u j,ui〉 = 〈u j,vi − 〈u1,vi〉
〈u1,u1〉u1 − . . . − 〈u j ,vi〉

〈u j ,u j〉u j − . . . − 〈ui−1,vi〉
〈ui−1,ui−1〉ui−1〉

= 〈u j,vi〉 − 〈u1,vi〉
〈u1,u1〉〈u j,u1〉 − . . . − 〈u j,vi〉

〈u j,u j〉〈u j,u j〉 − . . . − 〈ui−1,vi〉
〈ui−1,ui−1〉〈u j,ui−1〉

= 〈u j,vi〉 − 0 − . . . − 〈u j ,vi〉
〈u j ,u j〉〈u j,u j〉 − . . . − 0

= 〈u j,vi〉 − 〈u j,vi〉
= 0.

It follows that the set {u1, . . . ,uk} is orthogonal, as desired. ♠

Example 11.32: Gram-Schmidt orthogonalization procedure

In R4, find an orthogonal basis for

span








1

1

1

1


 ,




1

1

1

0


 ,




1

1

0

0








.

Solution. Let

v1 =




1

1

1

1


 , v2 =




1

1

1

0


 , and v3 =




1

1

0

0


 .

We calculate

u1 = v1 =




1

1

1

1


 ,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1 =




1

1

1

0


 −

3

4




1

1

1

1


 =




1/4

1/4

1/4

−3/4


 ,

u3 = v3 −
〈u1,v3〉
〈u1,u1〉

u1 −
〈u2,v3〉
〈u2,u2〉

u2

=




1

1

0

0


 −

2

4




1

1

1

1


 −

1/2

3/4




1/4

1/4

1/4

−3/4


 =




1/3

1/3

−2/3

0


 .
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Therefore the orthogonal basis is {u1,u2,u3}=








1

1

1

1


 ,




1/4

1/4

1/4

−3/4


 ,




1/3

1/3

−2/3

0








. ♠

The Gram-Schmidt procedure is sensitive to reordering the vectors. For example, if we order the original

basis vectors in Example 11.32 in the opposite order, we end up with a different orthogonal basis at the

end. Sometimes this can simplify the calculations, as the following example shows.

Example 11.33: Gram-Schmidt orthogonalization procedure: reordering the vectors

In R4, find an orthogonal basis for

span








1

1

0

0


 ,




1

1

1

0


 ,




1

1

1

1








.

Solution. Note that these are the same basis vectors as in Example 11.32, but listed in a different order.

Let

v1 =




1

1

0

0


 , v2 =




1

1

1

0


 , and v3 =




1

1

1

1


 .

We calculate

u1 = v1 =




1

1

0

0


 ,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1 =




1

1

1

0


 −

2

2




1

1

0

0


 =




0

0

1

0


 ,

u3 = v3 −
〈u1,v3〉
〈u1,u1〉

u1 −
〈u2,v3〉
〈u2,u2〉

u2

=




1

1

1

1


 −

2

2




1

1

0

0


 −

1

1




0

0

1

0


 =




0

0

0

1


 .

This time, we end up with the orthogonal basis {u1,u2,u3}=








1

1

0

0


 ,




0

0

1

0


 ,




0

0

0

1








. ♠

In the next example, we will consider Rn, but with a non-standard inner product.
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Example 11.34: Gram-Schmidt orthogonalization procedure, non-standard inner product

Let

A =




1 2 −2

2 6 −1

−2 −1 9


 ,

and consider the vector space R3 with the inner product given by 〈v,w〉= vT Aw. Let

v1 =




1

0

0


 , v2 =




0

1

0


 , and v3 =




0

0

1


 .

Apply the Gram-Schmidt procedure to v1,v2,v3 to find an orthogonal basis {u1,u2,u3} for R3 with

respect to the above inner product.

Solution. As usual, we start with

u1 = v1 =




1

0

0


 .

Next, we calculate

〈u1,v2〉 = uT
1 Av2 = 2,

〈u1,u1〉 = uT
1 Au1 = 1.

Therefore,

u2 = v2−
〈u1,v2〉
〈u1,u1〉

u1 =




0

1

0


− 2

1




1

0

0


=



−2

1

0


 .

Finally, we calculate

〈u1,v3〉 = uT
1 Av3 =−2,

〈u2,v3〉 = uT
2 Av3 = 3,

〈u2,u2〉 = uT
2 Au2 = 2.

Therefore,

u3 = v3−
〈u1,v3〉
〈u1,u1〉

u1−
〈u2,v3〉
〈u2,u2〉

u2 =




0

0

1


− −2

1




1

0

0


− 3

2



−2

1

0


=




5

−3/2

1


 .

So the desired orthogonal basis is

{u1,u2,u3}=








1

0

0


 ,



−2

1

0


 ,




5

−3/2

1





 .
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Note that it is not orthogonal with respect to the dot product, but with respect to the inner product defined

above. ♠

Example 11.35: Legendre polynomials

Consider the vector space P of polynomials, with the inner product

〈p,q〉=
∫ 1

−1
p(x)q(x)dx.

Use the Gram-Schmidt procedure to find an orthogonal basis for span
{

1,x,x2,x3
}

.

Solution. Let v1 = 1, v2 = x, v3 = x2, and v4 = x3. We follow the Gram-Schmidt procedure:

u1 = v1 = 1.

Before we calculate u2, we have to evaluate two integrals:

〈u1,v2〉 =
∫ 1

−1
1 · xdx =

[
1
2x2
]1
−1

= 0,

〈u1,u1〉 =

∫ 1

−1
1 ·1dx = [x]1−1 = 2.

Then

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1 = x − 0

2
·1 = x.

To calculate u3, we first evaluate three integrals:

〈u1,v3〉 =
∫ 1

−1
1 · x2 dx =

[
1
3x3
]1
−1

=
2

3
,

〈u2,v3〉 =
∫ 1

−1
x · x2 dx =

[
1
4x4
]1
−1

= 0,

〈u2,u2〉 =

∫ 1

−1
x · xdx =

[
1
3x3
]1
−1

=
2

3
.

Then

u3 = v3 −
〈u1,v3〉
〈u1,u1〉

u1 −
〈u2,v3〉
〈u2,u2〉

u2 = x2 − 2/3

2
·1 − 0

2/3
· x = x2− 1

3
.

To calculate u4, we first evaluate four integrals:

〈u1,v4〉 =
∫ 1

−1
1 · x3 dx =

[
1
4x4
]1
−1

= 0,

〈u2,v4〉 =

∫ 1

−1
x · x3 dx =

[
1
5x5
]1
−1

=
2

5
,
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〈u3,v4〉 =

∫ 1

−1
(x2− 1

3) · x3 dx =
[

1
6x6− 1

12x4
]1
−1

= 0,

〈u3,u3〉 =
∫ 1

−1
(x2− 1

3)
2 dx =

[
1
5x5− 2

9x3 + 1
9x
]1
−1

= 8
45 .

Then

u4 = v4 −
〈u1,v4〉
〈u1,u1〉

u1 −
〈u2,v4〉
〈u2,u2〉

u2 −
〈u3,v4〉
〈u3,u3〉

u3

= x3 − 0

2
·1 − 2/5

2/3
· x − 0

8/45
· (x2− 1

3
) = x3− 3

5
x.

Thus, we obtain the orthogonal basis {u1,u2,u3,u4}=
{

1, x, x2− 1
3 , x3− 3

5x
}

. ♠

The orthogonal polynomials from Example 11.35 are known (up to scalar multiples) as Legendre poly-

nomials. We can continue in the same fashion applying the Gram-Schmidt procedure to the polynomials

1,x,x2,x3,x4,x5,x6, . . . to get an infinite sequence of orthogonal polynomials. The first few elements of

this sequence are:

p0(x) = 1,

p1(x) = x,

p2(x) = x2− 1

3
,

p3(x) = x3− 3

5
x,

p4(x) = x4− 6

7
x2 +

3

35
,

p5(x) = x5− 10

9
x3 +

5

21
x,

p6(x) = x6− 15

11
x4 +

5

11
x2− 5

231
,

p7(x) = x7− 21

13
x5 +

105

143
x3− 35

429
x,

p8(x) = x8− 28

15
x6 +

14

13
x4− 28

143
x2 +

7

1287
.
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x6− 15
11x4 + 5

11x2− 5
231

x5− 10
9 x3 + 5

21x

x4− 6
7x2 + 3

35

x3− 3
5x

x2− 1
3

x

1

x

p(x)

1−1

The Gram-Schmidt procedure yields an orthogonal basis. If we want to compute an orthonormal basis,

we also have to normalize each basis vector. Since normalization usually involves dividing by a square

root, it is best to do this at the end, i.e., after the entire Gram-Schmidt procedure is complete, rather than

normalizing each ui immediately after it is found. Note that the Gram-Schmidt procedure itself does not

involve computing any square roots.

Example 11.36: Finding an orthonormal basis

In R4, find an orthogonal basis for

span








1

1

1

1


 ,




1

1

1

0


 ,




1

1

0

0








.

Solution. In Example 11.32, we already found an orthogonal basis

{u1,u2,u3} =








1

1

1

1


 ,




1/4

1/4

1/4

−3/4


 ,




1/3

1/3

−2/3

0







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for this space. So all that is left to do is to normalize each vector. The orthonormal basis is

{
u1

‖u1‖
,

u2

‖u2‖
,

u3

‖u3‖

}
=





1

2




1

1

1

1


 ,

2√
3




1/4

1/4

1/4

−3/4


 ,

√
3√
2




1/3

1/3

−2/3

0








.

Alternatively, we could have also normalized the orthogonal basis we found in Example 11.33. In that

case, we obtain the orthonormal basis



1√
2




1

1

0

0


 ,




0

0

1

0


 ,




0

0

0

1








.

♠

Example 11.37: Orthonormal basis of polynomials

Find an orthonormal basis for the space of Example 11.35.

Solution. In Example 11.35, we found the orthogonal basis {u1,u2,u3,u4}=
{

1, x, x2− 1
3 , x3− 3

5x
}

. We

also computed

〈u1,u1〉= 2, 〈u2,u2〉=
2

3
, and 〈u3,u3〉=

8

45
.

We also need to compute 〈u4,u4〉:

〈u4,u4〉 =
∫ 1

−1
(x3− 3

5x)2 dx =

∫ 1

−1
x6− 6

5x4 + 9
25x2 dx =

[
1
7x7− 6

25x5 + 3
25x3

]1
−1

=
8

175
.

Therefore, the orthonormal basis is:
{

u1

‖u1‖
,

u2

‖u2‖
,

u3

‖u3‖
,

u4

‖u4‖

}
=

{
1√
2

,

√
3

2
x,

√
45

8
(x2− 1

3
),

√
175

8
(x3− 3

5
x)

}
.

♠
We finish this section by remarking that the formula

〈u,v〉
〈u,u〉u

is exactly what we called the projection of v onto u in Section 2.6.5, except that we have generalized this

concept from Rn to an arbitrary inner product space. We can define

proju(v) =
〈u,v〉
〈u,u〉u.

With this definition, the Gram-Schmidt procedure can also be expressed more succinctly as follows.

u1 = v1,

u2 = v2 − proju1
(v2),

u3 = v3 − proju1
(v3) − proju2

(v3),
...

uk = vk − proju1
(vk) − proju2

(vk) − . . . − projuk−1
(vk).
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Exercises

Exercise 11.3.1 In R3 with the usual dot product, find an orthogonal basis for

span








1

2

3


 ,




2

6

0





 .

Exercise 11.3.2 In R4 with the usual dot product, find an orthogonal basis for

span








0

1

1

0


 ,




3

0

2

−1








.

Exercise 11.3.3 In R4 with the usual dot product, find an orthogonal basis for

span








1

0

1

0


 ,




1

3

1

−1


 ,




2

4

2

2








.

Exercise 11.3.4 Let

A =




3 −1 0

−1 5 2

0 2 3


 ,

and consider the vector space R3 with the inner product given by 〈v,w〉= vT Aw. Let

v1 =




1

0

2


 , v2 =



−1

1

−5


 , and v3 =




2

2

3


 .

Apply the Gram-Schmidt procedure to v1,v2,v3 to find an orthogonal basis {u1,u2,u3} for R3 with respect

to the above inner product.

Exercise 11.3.5 Let

A =




3 2 0 0

2 5 1 0

0 1 3 1

0 0 1 3


 ,

and consider the vector space R4 with the inner product given by 〈v,w〉= vT Aw. Let

v1 =




1

−1

1

1


 , v2 =




2

0

0

2


 , and v3 =




2

0

2

3


 ,
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and let W = span{v1,v2,v3}. Apply the Gram-Schmidt procedure to v1,v2,v3 to find an orthogonal basis

{u1,u2,u3} for W with respect to the above inner product.

Exercise 11.3.6 Consider the inner product space C[0,2], with the inner product given by

〈p,q〉=
∫ 2

0
f (x)g(x)dx.

Use the Gram-Schmidt procedure to find an orthogonal basis for span
{

1,x,x2
}

.

Exercise 11.3.7 Find an orthonormal basis for the subspace of R3 from Exercise 11.3.1.

11.4 Orthogonal projections and Fourier series

Outcomes

A. Compute the orthogonal projection of a vector onto a subspace.

B. Find the least squares approximation of a function by a polynomial of a given degree.

C. Calculate the generalized Fourier series of a vector.

D. Use Fourier series to approximate a function by polynomials or trigonometric functions.

We now reconsider a problem that we briefly encountered, only in the context of R3, in Section 3.2:

how to find the shortest distance between a point and a subspace. The method we used in Section 3.2

(see Example 3.26) relies on the existence of normal vectors and does not generalize beyond R3. The

following proposition gives a much better method for solving this problem, provided that we have an

orthogonal basis of the subspace.
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Proposition 11.38: Orthogonal projection onto a subspace

Let V be an inner product space, and let W be a subspace of V . Assume {u1, . . . ,uk} is an orthogonal

basis of W , and v ∈V is any vector. Then the following vector v′ is the element of W that is closest

to v, i.e., such that ‖v−v′‖ is as small as possible.

v′ =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 + . . .+
〈uk,v〉
〈uk,uk〉

uk.

Moreover, the vector v−v′ is orthogonal to W .

Wu1

u2

v

v′

0

The vector v′ is called the orthogonal projection of v onto W . We also say that v′ is the best

approximation of v in W .

Proof. In case v ∈W , then by Proposition 11.24, we have

v =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 + . . .+
〈uk,v〉
〈uk,uk〉

uk,

and therefore v′ = v. In that case ‖v−v′‖ = 0, which is clearly as small as possible, and v− v′ = 0 is

orthogonal to W , so we are done.

Now assume that v 6∈W . Let W ′= span{u1, . . . ,uk,v}. Apply the Gram-Schmidt procedure to the k+1

vectors u1, . . . ,uk,v to obtain an orthogonal basis of W ′. Since the first k vectors are already orthogonal,

the Gram-Schmidt procedure does not change them, and we therefore obtain an orthogonal basis of W ′

of the form u1, . . . ,uk,uk+1. Since v ∈W ′, we can write v as a linear combination of these basis vectors,

i.e., v = a1u1 + . . .+ akuk + ak+1uk+1. Moreover, by Proposition 11.24, we know that each a j is the

corresponding Fourier coefficient of v, i.e., a j =
〈u j ,v〉
〈u j,u j〉 .

Now consider any w ∈W . Since {u1, . . . ,uk} is a basis of W , we can write w = x1u1 + . . .+ xkuk.

Using Proposition 11.27, we have

‖v−w‖2 = ‖(a1− x1)u1 + . . .+(ak− xk)uk +ak+1uk+1‖2

= (a1− x1)
2‖u1‖2 + . . . + (ak− xk)

2 ‖uk‖2 + a2
k+1 ‖uk+1‖2 .

Here, a1, . . . ,ak+1 are the fixed coordinates of v, and x1, . . . ,xk depend on w. Therefore, ‖v−w‖ takes its
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smallest value when x j = a j, for j = 1, . . . ,k. So the minimum value of ‖v−w‖ occurs when

w = a1u1 + . . .+akuk =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 + . . .+
〈uk,v〉
〈uk,uk〉

uk = v′.

This is what had to be shown. Finally, to show that v−v′ is orthogonal to W , note that v−v′ = ak+1uk+1,

which is orthogonal to each u1, . . . ,uk, and therefore to W . ♠

Example 11.39: Orthogonal projection onto a subspace

Consider R4 with the usual dot product. Let W = span{u1,u2}, where

u1 =




1

1

2

0


 , u2 =




−1

−1

1

3


 .

Note that u1 and u2 are orthogonal. Let

v =




1

2

3

4


 .

Find the best approximation of v in W .

Solution. We calculate 〈u1,v〉 = 9, 〈u1,u1〉 = 6, 〈u2,v〉 = 12, and 〈u2,u2〉 = 12. Therefore, by Proposi-

tion 11.38, the desired vector is

v′ =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 =
9

6




1

1

2

0


+

12

12




−1

−1

1

3


 =




1/2

1/2

4

3


 .

♠

Note how straightforward the calculations in this example are. All we had to do is calculate a few inner

products. It is not even necessary to solve a system of equations. Such is the power of orthogonal bases.

The next example shows that we can use exactly the same method to find approximations of functions.
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Example 11.40: Approximating a function by a polynomial

Let V =C[−1,1] be the vector space of continuous functions, with the inner product given by

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx.

Consider the function f ∈V given by

f (x) = 1−|x| =
{

1+ x if x < 0,

1− x if x≥ 0.

Find the closest approximation to f by a polynomial of degree at most 2. Graph both f and the

approximating polynomial.

Solution. Let W = span
{

1,x,x2
}

be the subspace of V consisting of polynomials of degree at most 2.

What we are looking for is an element g ∈W such that ‖ f −g‖ is as small as possible. We can solve this

problem using Proposition 11.38.

First we need an orthogonal basis for W . We found such an orthogonal basis in Example 11.35, namely

the Legendre polynomials p0(x) = 1, p1(x) = x, and p2(x) = x2− 1
3 . By Proposition 11.38, the desired

approximation g ∈W is given by:

g =
〈p0, f 〉
〈p0, p0〉

p0 +
〈p1, f 〉
〈p1, p1〉

p1 +
〈p2, f 〉
〈p2, p2〉

p2.

We already computed the inner products 〈p0, p0〉 = 2, 〈p1, p1〉 = 2
3 , and 〈p2, p2〉 = 8

45 in Example 11.35.

We calculate the remaining inner products:

〈p0, f 〉 =

∫ 1

−1
1 · f (x)dx =

∫ 0

−1
1 · (1+ x)dx+

∫ 1

0
1 · (1− x)dx =

1

2
+

1

2
= 1,

〈p1, f 〉 =
∫ 1

−1
x · f (x) dx =

∫ 0

−1
x · (1+ x) dx+

∫ 1

0
x · (1− x) dx = − 1

6
+

1

6
= 0,

〈p2, f 〉 =
∫ 1

−1
(x2− 1

3
) · f (x)dx

=

∫ 0

−1
(x2− 1

3
) · (1+ x)dx+

∫ 1

0
(x2− 1

3
) · (1− x)dx = − 1

12
− 1

12
= − 1

6
.

Therefore,

g =
〈p0, f 〉
〈p0, p0〉

p0 +
〈p1, f 〉
〈p1, p1〉

p1 +
〈p2, f 〉
〈p2, p2〉

p2

=
1

2
p0 +

0

2/3
p1−

1/6

8/45
p2

=
1

2
− 15

16
(x2− 1

3
)

=
13

16
− 15

16
x2.

The following graph shows the function f (x) as well as the polynomial g(x):
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g(x) = 13
16 − 15

16x2

f (x) = 1−|x|

x

1−1

♠

When approximating a function f by a polynomial, as in the last example, there is no need to stop with

polynomials of degree 2. We can also ask what is the best approximation of f by a polynomial of degree

3, of degree 4, of degree 5, and so on. By increasing the degree of the polynomials, we get better and

better approximations to f . This leads us to the concept of a generalized Fourier series.

Definition 11.41: Generalized Fourier series

Let V be an inner product space and let {u1,u2,u3, . . .} be an infinite orthogonal set of vectors. Let

v ∈V . The generalized Fourier series of v (with respect to u1,u2,u3, . . .) consists of the following

sequence of vectors:

v1 =
〈u1,v〉
〈u1,u1〉

u1,

v2 =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2,

v3 =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 +
〈u3,v〉
〈u3,u3〉

u3,

v4 =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 +
〈u3,v〉
〈u3,u3〉

u3 +
〈u4,v〉
〈u4,u4〉

u4,

...

The vectors vi are also called generalized Fourier approximations of v.

By Proposition 11.38, we know that each vi is the best approximation of v in the subspace span{u1, . . . ,ui}.
In particular, ‖v−vi+1‖ ≤ ‖v−vi‖, so each vi is potentially a better approximation of v than the previous

one. In a course on analysis1, you will learn that in many situations, the sequence v1,v2,v3, . . . can be

shown to converge to v.

Example 11.42: Generalized Fourier series

Proceeding as in Example 11.40, find the generalized Fourier approximations of f (x) = 1−|x| up

to degree 8.

1“Algebra” is the name for those subjects where all sums are finite. This includes, for example, linear algebra and abstract

algebra. “Analysis” is the name for those subjects where sums are potentially infinite (and may or may not converge). This

includes, for example, calculus, complex analysis, and functional analysis.
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Solution. We use the Legendre polynomials p0, . . . , p8 from Section 11.3 and calculate the relevant inner

products, each of which requires solving an integral. As these integrals get a bit complicated, it is best to

use a computer algebra system to compute them.

〈p0, f 〉 = 1,

〈p1, f 〉 = 0,

〈p2, f 〉 = −1
6 ,

〈p3, f 〉 = 0,

〈p4, f 〉 = 1
105 ,

〈p5, f 〉 = 0,

〈p6, f 〉 = − 1
924 ,

〈p7, f 〉 = 0,

〈p8, f 〉 = 1
6435 ,

〈p0, p0〉 = 2,

〈p1, p1〉 = 2
3 ,

〈p2, p2〉 = 8
45 ,

〈p3, p3〉 = 8
175 ,

〈p4, p4〉 = 128
11025 ,

〈p5, p5〉 = 128
43659 ,

〈p6, p6〉 = 512
693693 ,

〈p7, p7〉 = 512
2760615 ,

〈p8, p8〉 = 32768
703956825 .

We therefore have the following approximations:

f0 = f1 =
1

2
p0,

f2 = f3 =
1

2
p0−

15

16
p2,

f4 = f5 =
1

2
p0−

15

16
p2 +

105

128
p4,

f6 = f7 =
1

2
p0−

15

16
p2 +

105

128
p4−

3003

2048
p6,

f8 = f9 =
1

2
p0−

15

16
p2 +

105

128
p4−

3003

2048
p6 +

109395

32768
p8.

The following graph shows the function f as well as its approximations f0, f2, f4, f6, and f8. It can be

seen that each successive approximation is closer to the function f than the previous one.

f

f0

f2

f4

f6

f8 x

1−1

♠
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Example 11.43: Generalized Fourier series

The following graph shows the generalized Fourier approximations of the function

f (x) =

{
0 if x < 0,

1 if x≥ 0

by polynomials up to degree 7. (Note: the function f is not continuous, so not technically an

element of C[−1,1], but we ignore this here. Instead of the vector space of continuous functions,

we can work in the vector space of piecewise continuous functions).

f

f0

f1

f3

f5

f7

x

1−1

Comparing the last two examples, we see that the function in Example 11.43 is much harder to ap-

proximate well by polynomials. This is due to the discontinuity in the latter function. Nevertheless, the

sequence of approximations eventually converges to f .

Example 11.44: Generalized Fourier series

The following graph shows the generalized Fourier approximations of the function

f (x) =





0 if x <−1
2 ,

x+ 1
2 if −1

2 ≤ x < 1
2 ,

1 if x≥ 1
2

by polynomials up to degree 7.
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f

f0

f1

f3

f5

f7

x

1−1

So far, we have worked with Legendre polynomials, but there are of course other examples of or-

thogonal sets of functions. An important such set is given by sine and cosine waves. We will see that

every periodic function can be decomposed into sine and cosine waves of varying frequencies. This was

Fourier’s original discovery, and the corresponding series are just known as Fourier series (i.e., not “gen-

eralized”).

Example 11.45: Fourier series

Consider the inner product space C[0,2π ]. Recall from Example 11.21 that the following functions

form an orthogonal set:

u0 = 1

u1 = sinx

u2 = cosx

u3 = sin2x

u4 = cos2x

u5 = sin3x

u6 = cos3x
...

Consider the function f (x) = x−π , where x ∈ [0,2π ]. Find its Fourier series.

Solution. Following Definition 11.41, we must calculate a number of inner products. We have 〈u0,u0〉 =
2π . Also, for all i≥ 1, we have 〈ui,ui〉= π . We note the following antiderivatives, for k ≥ 1:

∫
xsinkxdx = − x

k
coskx+

1

k2
sinkx,

∫
xcoskxdx =

x

k
sinkx+

1

k2
coskx.

Using these formulas, we can compute the following inner products quite easily:

〈u0, f 〉 =
∫ 2π

0
(x−π) = 0,
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〈u1, f 〉 =

∫ 2π

0
(x−π)sinx = −2π ,

〈u2, f 〉 =
∫ 2π

0
(x−π)cosx = 0,

〈u3, f 〉 =
∫ 2π

0
(x−π)sin2x = − 2π

2
,

〈u4, f 〉 =

∫ 2π

0
(x−π)cos2x = 0,

〈u5, f 〉 =
∫ 2π

0
(x−π)sin3x = − 2π

3
,

〈u6, f 〉 =

∫ 2π

0
(x−π)cos3x = 0,

and so on. We therefore find the following Fourier series:

f1 = −2sinx,

f3 = −2sinx− 2

2
sin2x,

f5 = −2sinx− 2

2
sin2x− 2

3
sin3x,

f7 = −2sinx− 2

2
sin2x− 2

3
sin3x− 2

4
sin4x,

f9 = −2sinx− 2

2
sin2x− 2

3
sin3x− 2

4
sin4x− 2

5
sin5x,

and so on. ♠

The following graph illustrates the successive approximations of this Fourier series.

f

f1

f3

f5

f7

x
π 2π 3π 4π 5π 6π

Note that, although the function f is defined on the interval [0,2π ], we have extended it periodically for

[2π ,4π ], [4π ,6π ], and so on. This makes sense because all of the orthogonal functions 1, sinx, cosx,

sin2x, and so on, have period 2π .

We can also illustrate the same information differently, by showing the individual sine waves making

up the wave form of the function f (x). In the context of audio signals, these sine waves are also called the

harmonics of the signal.
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=





−2
1 sin(x)

−2
2 sin(2x)+

−2
3 sin(3x)+

−2
4 sin(4x)+

+ · · ·

Example 11.46: Fourier series

The following graph shows the first few Fourier approximations of the function

f (x) =

{
x− π

2 if 0≤ x < π ,
3π
2 − x if π ≤ x≤ 2π .

f

f2

f4

f6

f8

x
π 2π 3π 4π 5π 6π

Note how rapidly this Fourier series converges to f . The following image shows the function f (extended

periodically outside the interval [0,2π ]) as a sum of its harmonics. Compared to Example 11.45, we see

that the higher harmonics have much smaller amplitudes, which explains the rapid convergence.

=





− 4
π cos(x)

− 4
9π cos(3x)+

+ − 4
25π cos(5x)

+ − 4
49π cos(7x)

+ · · ·
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Example 11.47: Fourier series

The following graph shows the first few Fourier approximations of the function

f (x) =

{
1 if 0≤ x < π ,

−1 if π ≤ x≤ 2π .

f

f1 f3 f5 f7

x
π 2π 3π 4π 5π 6π

Once again, here is an image showing the function f as a sum of its harmonics:

=





4
π sin(x)

4
3π sin(3x)+

4
5π sin(5x)+

4
7π sin(7x)+

+ · · ·

Watch the video at https://youtu.be/3IAMpH4xF9Q for a demonstration of what the functions from

Examples 11.45–11.47, and their harmonics, sound like as audio signals.

Exercises

Exercise 11.4.1 Consider R3 with the usual dot product. Let

u1 =



−1

1

1


 , u2 =



−1

−2

1


 , and v =



−1

5

3


 .

Note that u1 and u2 are orthogonal. Find the best approximation of v in span{u1,u2}.

https://youtu.be/3IAMpH4xF9Q
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Exercise 11.4.2 Consider R4 with the usual dot product. Let

u1 =




0

0

1

3


 , u2 =




1

1

0

0


 , u3 =




1

−1

3

−1


 , and v =




6

−2

−5

5


 .

Note that u1, u2, and u3 are orthogonal. Find the best approximation of v in span{u1,u2,u3}.

Exercise 11.4.3 In the inner product space V =C[−1,1], consider the function f ∈V given by

f (x) =

{
1 if x < 0,

1− x if x≥ 0.

Find the closest approximation to f by a polynomial of degree at most 0, 1, 2, 3, and 4. Graph both f and

the approximating polynomials.

Exercise 11.4.4 In the inner product space C[−π ,π ], consider the orthogonal set of functions from Ex-

ample 11.21: {1,sinx, cosx, sin2x, cos2x, sin3x, cos3x, . . .}. Let f (x) = x2, where x ∈ [−π ,π ]. Find the

Fourier series of f .

11.5 Application: Least squares approximations and curve

fitting

Outcomes

A. Find least squares approximations for a system of equations.

B. Find best fit lines and parabolas for a set of data points.

In this section, we will consider the problem of finding approximate solutions to a system of linear equa-

tions Av = b. This can be useful when the system is inconsistent, but we would still like to find a “best”

answer. For example, consider the following system of equations.

0.1x + 0.2y = 0.3,

0.2x + 0.5y = 0.7,

0.7x + 0.2y = 0.9.

This system has the solution (x,y) = (1,1), so it is clearly consistent. Now imagine that we introduce

some small inaccuracies into the equations. The inaccuracies might perhaps be due to round-off errors, or
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due to measurement errors if the coefficients are obtained from experimental data. We might end up with

the following system of equations:

0.1000001x + 0.2y = 0.3,

0.2x + 0.5y = 0.7,

0.7x + 0.2y = 0.9.

Except for a tiny error in one of the coefficients, this is the same system of equations as before. We would

expect that such a small error does not affect the result much. However, this last system of equations

is inconsistent; it has no solutions at all. You can see this by observing that (x,y) = (1,1) is still the

unique solution to the last two equations; substituting this into the first equation, we get 0.3000001 = 0.3,

which almost, but not exactly, true. What we would like to find in a situation like this is an “approximate

solution”, i.e., numbers x and y such that each of the three equations “almost” holds. We can formulate

the problem more precisely as follows:

Problem 11.48: Least squares approximation problem

Given a (possibly inconsistent) system of equations Av = b, find v such that

‖Av−b‖

is as small as possible. We call such a vector v a least squares approximation for the system of

equations.

To see why this is called a “least squares” approximation, consider a system of equations

a11x1 + · · · + a1nxn = b1,

a21x1 + · · · + a2nxn = b2,

· · ·
am1x1 + · · · + amnxn = bm.

We can write this in matrix form Av = b, where

A =




a11 · · · a1n
...

. . .
...

am1 · · · amn


 , b =




b1
...

bm


 , and v =




x1
...

xn


 .

Then

Av−b =




a11x1 + · · · + a1nxn − b1

· · ·
am1x1 + · · · + amnxn − bm


 ,

and therefore

‖Av−b‖2 = (a11x1 + · · ·+a1nxn−b1)
2 + . . .+(am1x1 + · · ·+amnxn−bm)

2.

Therefore, minimizing ‖Av−b‖ is the same as minimizing the sum of the squares of the errors of all the

equations, where the error of each equation is defined to be the difference between its left-hand side and

right-hand side.
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We note that ‖Av−b‖ = 0 if and only if Av = b. Therefore, if the system of equations Av = b is

consistent, then its least squares approximations are exactly the solutions of the system of equations in the

usual sense.

The least squares approximation problem has a very elegant solution, provided by the following propo-

sition.

Proposition 11.49: Solution of the least squares approximation problem

A vector v is a least squares approximation of the system of equations Av = b if and only if

AT Av = AT b.

Proof. Let a1, . . .an be the columns of the matrix A. Recall that span{a1, . . .an} is called the column space

of A, which we write as col(A). If

v =




x1
...

xn


 ,

is any vector, then by the definition of matrix multiplication, we have

Av = x1a1 + . . .+ xnan.

Therefore, a vector is of the form Av if and only if it is an element of col(A). In particular, the equation

Av = b has a solution if and only if b is an element of the column space of A. For v to be a least squares

approximation, we want ‖Av−b‖ to be as small as possible. This means that we are looking for the

element of col(A) that is closest to b.

col(A)

b

Av

Av−b

0

From Proposition 11.38, we know that this happens when Av−b is orthogonal to col(A). Since col(A) =
span{a1, . . .an}, this is equivalent to saying that Av− b is orthogonal to each of the vectors a1, . . .an.

Therefore,

aT
i (Av−b) = 0

for i = 1, . . . ,n. Since aT
1 , . . .aT

n are the rows of the matrix AT , this system of n equations is equivalent to

the single equation

AT (Av−b) = 0,

or equivalently,

AT Av = AT b.
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♠

Example 11.50: Least squares approximation

Find the least squares approximation for the system of equations

2x + 2y + 2z = 1,

x − y − z = −2,

−x − y + 2z = 4,

2x + 2y − z = −8.

Solution. We first write the system in matrix form Av = b, where

A =




2 2 2

1 −1 −1

−1 −1 2

2 2 −1


 and b =




1

−2

4

−8


 .

By Proposition 11.49, the least squares approximation is given by the solution of the system of equations

AT Av = AT b. We calculate:

AT A =




2 1 −1 2

2 −1 −1 2

2 −1 2 −1







2 2 2

1 −1 −1

−1 −1 2

2 2 −1


=




10 8 −1

8 10 1

−1 1 10


 ,

AT b =




2 1 −1 2

2 −1 −1 2

2 −1 2 −1







1

−2

4

−8


=



−20

−16

20


 .

Therefore, we must solve the system of equations



10 8 −1

8 10 1

−1 1 10






x

y

z


=



−20

−16

20


 .

After some row operations, we find that the unique solution is (x,y,z) = (−1,−1,2). We can double-check

this answer as follows. We calculate

Av−b =




2 2 2

1 −1 −1

−1 −1 2

2 2 −1






−1

−1

2


−




1

−2

4

−8


 =




0

−2

6

−6


−




1

−2

4

−8


 =




−1

0

2

2




and check that this vector is orthogonal to every column of A. Since this is the case, our answer is correct.

♠

An important application of least squares approximations is curve fitting: finding the “best” function of a

given type (for example, linear, quadratic) to fit a given series of data points. The next two examples show

how to use least square approximations to solve curve fitting problems.
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Example 11.51: Least squares line

A company has collected daily data on temperature and ice cream sales over a period of one week.

The data is as follows:
Date Peak temperature Sales

July 1 17 ◦C $320

July 2 22 ◦C $570

July 3 26 ◦C $850

July 4 20 ◦C $470

July 5 24 ◦C $750

July 6 23 ◦C $620

July 7 23 ◦C $680

The company is interested in predicting how temperature will affect future sales. Find a function

of the form y = a+ bx that best fits the data, where x is temperature in degrees Celsius and y is

sales in dollars. By “best fit”, we mean that the sum of the square of the errors should be as small

as possible (where each error is the difference between the dollar amount predicted by the formula

y = a+bx and the actual dollar amount). Such a function is called a least squares line or a linear

regression for the data.

Solution. We first write down a system of equations that expresses the relationship y = a+bx for each of

the seven data points (x,y):
a + 17b = 320,

a + 22b = 570,

a + 26b = 850,

a + 20b = 470,

a + 24b = 750,

a + 23b = 620,

a + 23b = 680.

This is a system of seven equations in two variables (the variables are a and b). This system is likely

inconsistent, because there are more equations than variables, and also because it is unlikely that the

relationship between temperature and sales is exactly (as opposed to approximately) linear. Instead, we

find the least squares approximation for the system of equations. We let

A =




1 17

1 22

1 26

1 20

1 24

1 23

1 23




and b =




320

570

850

470

750

620

680




.

By Proposition 11.49, we must solve the equation AT Av = AT b. We calculate

AT A =

[
7 155

155 3483

]
and AT b =

[
4260

97380

]
.
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So the system of equations we must solve is
[

7 155

155 3483

][
a

b

]
=

[
4260

97380

]
.

After some row operations, we find the unique solutions (a,b) = (−720,60). This means that the desired

linear approximation is y = −720+ 60x. The following plot shows this function along with the original

data points.

x (temperature)

y (sales)

15 20 25

200

400

600

800

1000

The following table compares the observed data to the computed linear regression (sorted by increasing

temperature). It also shows the error for each data point.

Temperature Actual sales Best linear fit Error

17 320 300 −20

20 470 480 +10

22 570 600 +30

23 620 660 +40

23 680 660 −20

24 750 720 −30

26 850 840 −10

The sum of the squares of the errors is 202 +102 +302 +402 +202 +302 +102 = 4400. ♠

Example 11.52: Least squares parabola

Find a quadratic polynomial that is the best fit for the following data points:

(x1,y1) = (3, 23.5),
(x2,y2) = (4, 13.5),
(x3,y3) = (5, 12.5),
(x4,y4) = (6, 5.5),
(x5,y5) = (7, 9.0),
(x6,y6) = (8, 8.0),
(x7,y7) = (9, 19.0).
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Solution. We are looking for an equation of the form y = a+bx+cx2. Substituting each of the seven data

points into the equation, we obtain 7 equations in the unknowns a, b, and c:

a + 3b + 9c = 23.5,

a + 4b + 16c = 13.5,

a + 5b + 25c = 12.5,

a + 6b + 36c = 5.5,

a + 7b + 49c = 9.0,

a + 8b + 64c = 8.0,

a + 9b + 81c = 19.0.

We write this in matrix form at Av = b, where

A =




1 3 9

1 4 16

1 5 25

1 6 36

1 7 49

1 8 64

1 9 81




and b =




23.5

13.5

12.5

5.5

9.0

8.0

19.0




.

To find the least squares approximation, we calculate

AT A =




7 42 280

42 280 2016

280 2016 15316


 and AT b =




91

518

3430




and solve the system of equations AT Av = AT b, i.e.,



7 42 280

42 280 2016

280 2016 15316






a

b

c


 =




91

518

3430


 .

After doing some row operations, we find that the unique solution is (a,b,c) = (67,−19,1.5). Therefore,

the desired quadratic approximation is y = 67−19x+1.5x2. The following plot shows this function along

with the original data points.
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The following table shows the original data, the values of the best fit parabola, and the error for each data

point.
x Actual y Best fit parabola Error

3 23.5 23.5 0.0

4 13.5 15.0 +1.5

5 12.5 9.5 −3.0

6 5.5 7.0 +1.5

7 9.0 7.5 −1.5

8 8.0 11.0 +3.0

9 19.0 17.5 −1.5

The sum of the squares of the errors is 02 +1.52 +32 +1.52 +1.52 +32 +1.52 = 27. ♠

Exercises

Exercise 11.5.1 Find the least squares approximation for the system of equations

x + 2y + 2z = 5,

x + y − z = 11,

x + 2y − z = −18,

2x − y + 2z = 0.

Exercise 11.5.2 Find the least squares approximation for the system of equations




−1 2 1

−1 0 −1

2 0 2

0 0 2

1 2 2







x

y

z


=




1

1

3

−2

4




.

Exercise 11.5.3 Consider the points (x1,y1) = (−1,0), (x2,y2) = (0,3), (x3,y3) = (1,3), (x4,y4) = (2,5),
(x5,y5) = (3,9). Find the least squares line for these points.

Exercise 11.5.4 Consider the points (x1,y1) = (−1,4), (x2,y2) = (0,−2), (x3,y3) = (1,4), (x4,y4) =
(2,2). Find the least squares parabola for these points.
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11.6 Orthogonal functions and orthogonal matrices

Outcomes

A. Determine whether a linear transformation is an isometry and/or orthogonal.

B. Determine whether a matrix is orthogonal.

Definition 11.53: Isometries and orthogonal maps

Let V ,W be real inner product spaces, and let T : V →W be a linear transformation. We say that T

is an isometry if for all u,v ∈V ,

〈T (u),T (v)〉= 〈u,v〉.
Moreover, T is called an orthogonal transformation, or simply orthogonal, if it is an isometry

and invertible.

In particular, if T is an isometry, we have ‖T v‖ =
√
〈T v,T v〉 =

√
〈v,v〉 = ‖v‖, so isometries preserve

the norm. (This is fact where the name “isometry” comes from: from Greek “isos”, meaning “equal”, and

“metron”, meaning “measure”). Conversely, any norm-preserving linear function is an isometry, as the

following proposition shows.

Proposition 11.54: Norm-preserving linear maps are isometries

Let T : V →W be a linear function such that for all v ∈V , ‖T v‖= ‖v‖. Then T is an isometry.

Proof. We first note that for all u,v ∈V ,

〈u,v〉 = 1

2
(〈u,v〉+ 〈v,u〉) =

1

2
(〈u+v,u+v〉−〈u,u〉−〈v,v〉) =

1

2
(‖u+v‖2−‖u‖2−‖v‖2).

Now suppose T is norm-preserving and linear. Then for all u,v ∈V ,

〈T (u),T (v)〉 =
1

2
(‖T (u)+T (v)‖2−‖T (u)‖2−‖T (v)‖2)

=
1

2
(‖T (u+v)‖2−‖T (u)‖2−‖T (v)‖2)

=
1

2
(‖u+v‖2−‖u‖2−

∥∥v2
∥∥)

= 〈u,v〉.

Therefore, T is an isometry. ♠

We also note that if T is an isometry and u ⊥ v, then T (u) ⊥ T (v), because 〈T (u),T (v)〉 = 〈u,v〉 = 0.

So isometries preserve right angles. In fact, isometries also preserve arbitrary angles, due to the formula

cosθ =
〈u,v〉
‖u‖‖v‖ =

〈T (u),T (v)〉
‖T (u)‖‖T (v)‖ .
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Example 11.55: Orthogonal transformations on Rn

Let T1,T2,T3 : R2→R2 be the linear transformations with matrices

[T1] =

[
0 −1

1 0

]
, [T2] =

[
2 0

0 2

]
, and [T3] =

[
1 1

0 1

]
,

respectively. T1 is a counterclockwise rotation by 90◦, T2 is a scaling by a factor of 2, and T3 is a

shearing. Then T1 is orthogonal, but T2 and T3 are not. Note that T1, being a rotation, preserves

lengths and angles. T2 preserves angles but not lengths. T3 preserves neither lengths nor angles.

T17−→

orthogonal

T27−→

not orthogonal

T37−→

not orthogonal

Proposition 11.56: The matrix of an orthogonal transformation

Let V ,W be finite-dimensional real inner product spaces and let T : V →W be a linear transforma-

tion. Let B and C be orthonormal bases of V and W , respectively, and let P = [T ]C,B be the matrix

of T with respect to the bases B and C. Then

(a) T is an isometry if and only if PT P = I.

(b) T is orthogonal if and only if PT P = I and dimV = dimW .

Proof. (a) Recall from Proposition 11.28 that for all u,v ∈ V , we have 〈u,v〉 = [u]B·[v]B. Consider two

vectors u,v ∈V and let t = [u]B and s = [v]B. We have:

〈T (u),T (v)〉= 〈u,v〉 ⇐⇒ [T (u)]C·[T (v)]C = [u]B·[v]B
⇐⇒ ([T ]C,B [u]B)·([T ]C,B [v]B) = [u]B·[v]B
⇐⇒ (Pt)·(Ps) = t·s
⇐⇒ tT PT Ps = tT s

⇐⇒ tT PT Ps = tT Is.
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Therefore, T is an isometry if and only if tT PT Ps = tT Is holds for all t,s ∈ Rm. If PT P = I, then this is

clearly true. Conversely, assume tT PT Ps = tT Is holds for all t,s ∈Rm. Then by taking t and s to be the i th

and j th standard basis vector, it follows that the (i, j)-entry of PT P is equal to the (i, j)-entry of I, for all i

and j. Therefore, PT P = I.

(b) By definition, T is orthogonal if and only if it is an isometry and invertible. Therefore, if T is

orthogonal, then PT P = I by part (a) and dimV = dimW because every invertible matrix is square (see

Theorem 4.48). Conversely, assume that PT P = I and dimV = dimW . Then T is an isometry by part (a).

Also, by Theorem 4.64, since P is square and PT is a left inverse of P, the matrix P, and therefore the

linear transformation T , is invertible. Therefore, T is orthogonal. ♠

Example 11.57: Orthogonal transformations

Which of the following matrices define orthogonal transformations? Which ones define isometries?

A =

[
0 1

−1 0

]
, B =

[
1 1

1 0

]
, C =

1√
2

[
1 1

1 −1

]
, D =

1

3




1 −2

2 −1

2 2


 .

Solution. We have

AT A =

[
0 1

−1 0

][
0 −1

1 0

]
=

[
1 0

0 1

]
= I,

and therefore A defines an isometry and (since it is also a square matrix) an orthogonal transformation.

We have

BT B =

[
1 1

1 0

][
1 1

1 0

]
=

[
2 1

1 1

]
6= I,

so the linear transformation defined by B is neither an isometry nor orthogonal. A similar pair of calcula-

tions shows that CTC = I and DT D = I, so both C and D are isometries. Since C is a square matrix, it is

also orthogonal. D is not a square matrix, and therefore not orthogonal. ♠

In light of Proposition 11.56, we say that an n×n-matrix P is orthogonal if PT P = I.

Definition 11.58: Orthogonal matrix

An n×n-matrix P is called orthogonal if PT P = I.

The following proposition gives several equivalent ways of checking whether an n×n-matrix P is orthog-

onal.
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Proposition 11.59: Conditions for orthogonal matrices

The following are equivalent for an n×n-matrix P:

(a) P is orthogonal.

(b) PT P = I.

(c) P is invertible and P−1 = PT .

(d) PPT = I.

(e) PT is orthogonal.

(f) The columns of P form an orthonormal set of vectors.

(g) The rows of P form an orthonormal set of vectors.

Proof. The equivalence (a)⇔ (b) is just the definition of orthogonality, bearing in mind that P is assumed

to be a square matrix. The equivalences (b)⇔ (c)⇔ (d) follow from Theorem 4.64, since a square matrix

is invertible if and only if it is left invertible if and only if it is right invertible. The equivalence (d) ⇔
(e) is again just the definition of orthogonality, this time applied to PT . To show (b)⇔ (f), let a1, . . . ,an

be the columns of P, and let e1, . . . ,en be the standard basis vectors of Rn. Then we have PT P = I if and

only if for all i, j, the (i, j)-entry of PT P is equal to the (i, j)-entry of I. But the (i, j)-entry of PT P is

eT
i PT Pe j = aT

i a j = ai·a j. On the other hand, the (i, j)-entry of I is 1 if i = j and 0 if i 6= j. It follows that

PT P = I if and only if for all i, j,

ai·a j =

{
1 when i = j and

0 otherwise.

But this is exactly what it means for a1, . . . ,an to form an orthonormal set. The proof of (d) ⇔ (g) is

completely analogous, using rows instead of columns. ♠

Example 11.60: Orthogonal matrices

Determine which of the following matrices are orthogonal by checking whether the columns form

an orthonormal set.

A =




0 −1 0

1 0 0

0 0 1


 , B =

1

3




2 −1 2

−1 2 2

2 2 −1


 , C =




3 4 0

4 −3 0

0 0 5


 , D =

1

3




2 1 2

1 2 2

2 2 1


 .

Solution. By Proposition 11.59, it suffices to check whether the columns of each matrix are orthonormal.

This is the case for A and B. For example, the columns of B are

b1 =
1

3




2

−1

2


 , b2 =

1

3



−1

2

2


 , and b3 =

1

3




2

2

−1


 ,
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and we have

b1·b1 =
1

9




2

−1

2


·



2

−1

2


= 1, b1·b2 =

1

9




2

−1

2


·


−1

2

2


= 0,

b2·b2 =
1

9



−1

2

2


·


−1

2

2


= 1, b1·b3 =

1

9




2

−1

2


·



2

2

−1


= 0,

b3·b3 =
1

9




2

2

−1


·



2

2

−1


= 1, b2·b3 =

1

9



−1

2

2


·



2

2

−1


= 0.

So the columns of B are orthonormal. The columns of C are orthogonal, but not normalized, so C is not an

orthogonal matrix. The columns of D are normalized, but not orthogonal, so D is not an orthogonal matrix

either. ♠

Proposition 11.61: Properties of orthogonal matrices

(a) If P,Q are orthogonal n×n-matrices, then PQ is orthogonal.

(b) The identity matrix is orthogonal.

(c) If P is orthogonal, then so is P−1.

(d) If P is an orthogonal n×n-matrix and Q is an orthogonal m×m-matrix, then the (n+m)×
(n+m)-matrix [

P 0

0 Q

]

is orthogonal.

Exercises

Exercise 11.6.1 Which of the following linear transformations T : R3→R3 are orthogonal?

(a) A rotation by 30 degrees about the z-axis.

(b) A reflection about the plane x = y.

(c) A scaling by a factor of 2.

(d) A scaling by a factor of −1.
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Exercise 11.6.2 Which of the following matrices define orthogonal transformations? Which ones define

isometries?

A =

[
1 0

0 −1

]
, B =

1

2

[
1 1

−1 1

]
, C =

1√
5

[
1 −2

2 1

]
, D =

1

4




1 2

2 2

2 −1


 .

Exercise 11.6.3 Determine which of the following matrices are orthogonal by checking whether the

columns form an orthonormal set.

A =
1

3




1 2 2

2 1 −2

−2 2 −1


 , B =




0 0 2

0 2 0

2 0 0


 , C =

1

3




2 −1 2

−1 2 −2

2 −2 1


 , D =

1

5




3 4 0

4 −3 0

0 0 5


 .

11.7 Diagonalization of real symmetric matrices

Outcomes

A. Compute the eigenvalues of a real symmetric matrix.

B. Compute an orthogonal basis of eigenvectors for a real symmetric matrix.

C. Orthogonally diagonalize a real symmetric matrix.

In Chapter 8, we saw that some matrices are diagonalizable, and others are not. In this section, we will see

that the theory of diagonalization is much nicer when the matrix to be diagonalized is symmetric. Recall

that a matrix A is symmetric if A = AT . We begin with some observations about the eigenvalues and

eigenvectors of a real symmetric matrix.

Proposition 11.62: Eigenvalues and eigenvectors of real symmetric matrices

Let A be a symmetric matrix with real entries. Then

(a) All eigenvalues of A are real (i.e., not complex).

(b) Eigenvectors for distinct eigenvalues of A are orthogonal.

Proof. (a) Suppose λ is a (possibly complex) eigenvalue of A, with (possibly complex) eigenvector v. We

will show that λ is in fact real. Let λ be the complex conjugate of λ , and let v be the complex conjugate

of v, i.e., the vector obtained from v by taking the complex conjugate of each of its entries. Since v is an

eigenvector for eigenvalue λ of A, we have

vT Av = λvT v. (11.2)
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Taking the complex conjugate of both sides of the equation, and using the fact that A = A (since A is real),

we get

vT Av = λvT v. (11.3)

Then, taking the transpose of both sides of the equation, and using the fact that AT = A (since A is sym-

metric), we have

vT Av = λvT v. (11.4)

Comparing equations (11.2) and (11.4), we find that λvT v = λvT v. Since vT v is a non-zero scalar, it

follows that λ = λ , i.e., λ is real.

(b) Suppose v is an eigenvector for eigenvalue λ , w is an eigenvector for eigenvalue µ , and λ 6= µ . We

evaluate vT Aw in two different ways. On the on hand, we have

vT Aw = vT (Aw) = vT (µw) = µvT w.

On the other hand, we have

vT Aw = (vT A)w = (AT v)T w = (Av)T w = (λv)T w = λvT w.

Therefore, µvT w = λvT w, or equivalently (λ − µ)vT w = 0. Since by assumption, λ − µ 6= 0, we must

have vT w = 0, i.e., v⊥ w. ♠

Recall that an n×n-matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix

D such that D = P−1AP. We say that A is orthogonally diagonalizable if P can, moreover, be chosen

to be orthogonal. Orthogonal diagonalizability is a convenient property, because when P is orthogonal,

then P−1 = PT , and we can interchangeably write D = P−1AP or D = PT AP. The following is the main

theorem about the diagonalization of real symmetric matrices.

Theorem 11.63: Diagonalization of real symmetric matrices

Every real symmetric matrix A is orthogonally diagonalizable.

Proof. By induction on the size of the matrix. For a 1×1-matrix, there is nothing to show, as it is already

diagonal. Now consider a real symmetric n× n-matrix A with n ≥ 2. By the fundamental theorem of

algebra, the characteristic polynomial has at least one root, so that A has at least one (possibly complex)

eigenvalue λ . By Proposition 11.62(a), λ is real. Since we can solve the system of equations (A−λ I)v= 0

over the real numbers, there exists a real eigenvector v for the eigenvalue λ . We can assume without loss of

generality that v is normalized, because else we could replace v by 1
‖v‖v. By the Gram-Schmidt method, we

can find an orthonormal basis {u1, . . . ,un} of Rn such that u1 = v. Let Q be the orthogonal matrix that has

u1, . . . ,un as its columns, and consider B = Q−1AQ. Since Be1 = Q−1AQe1 = Q−1Au1 = λQ−1u1 = λe1,

the matrix B is of the form

B =




λ b12 · · · b1n

0 b22 · · · b2n
...

...
. . .

...

0 bn2 · · · bnn


 .
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Moreover, since B = Q−1AQ = QT AQ, the matrix B is symmetric. Therefore b12, . . . ,b1n = 0, and B is of

the form

B =




λ 0 · · · 0

0
... C

0


 ,

where C is a symmetric matrix of dimension n−1. By induction hypothesis, C is orthogonally diagonal-

izable, i.e., there exists an orthogonal matrix R such that R−1CR = D is diagonal. Let

S =




1 0 · · · 0

0
... R

0


 .

Then S is orthogonal by Proposition 11.61(4). Let E = S−1BS. Then

E = S−1BS =




λ 0 · · · 0

0
... R−1CR

0


=




λ 0 · · · 0

0
... D

0


 .

Therefore, E is diagonal. Let P = QS. Then P is orthogonal by Proposition 11.61(1). Moreover, we have

P−1AP = S−1Q−1AQS = S−1BS = E.

Therefore, A is orthogonally diagonalizable. ♠

Example 11.64: Diagonalization of real symmetric matrices

Orthogonally diagonalize the matrix

A =

[
3 2

2 6

]
,

i.e., find an orthogonal matrix P and a diagonal matrix D such that D = P−1AP.

Solution. We proceed in much the same way as in Chapter 8, except that at a crucial moment, we ensure

that P is orthogonal. We start by calculating the characteristic polynomial of A:

det(A−λ I) =

∣∣∣∣
3−λ 2

2 6−λ

∣∣∣∣ = (3−λ )(6−λ )−4 = λ 2−9λ +14.

We find the roots using the quadratic formula. The roots of the characteristic polynomial, and therefore

the eigenvalues of A, are λ = 7 and λ = 2. For the eigenvalue λ = 7, we find the eigenvector

v =

[
1

2

]
,
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and for the eigenvalue λ = 2, we find the eigenvector

w =

[
−2

1

]
.

We note that these two eigenvectors are orthogonal to each other, exactly as predicted by Proposition 11.62.

So the vectors {v,w} form an orthogonal set. We turn this into an orthonormal set by normalizing each

eigenvector, i.e., the normalized eigenvectors are

u1 =
1

‖v‖v =
1√
5

[
1

2

]
and u2 =

1

‖w‖w =
1√
5

[
−2

1

]
.

We let P be the matrix that has columns u1 and u2, i.e.,

P =
1√
5

[
1 −2

2 1

]
.

Note that since u1 and u2 are orthonormal, P is automatically orthogonal by Proposition 11.59. Moreover,

we have

P−1 = PT =
1√
5

[
1 2

−2 1

]
.

Finally,

P−1AP = PT AP =
1

5

[
1 2

−2 1

][
3 2

2 6

][
1 −2

2 1

]
=

[
7 0

0 2

]
.

♠

Example 11.65: Diagonalization of real symmetric matrices

Find an orthogonal matrix P and a diagonal matrix D such D = P−1AP, where

A =




3 1 −2

1 3 2

−2 2 0


 .

Solution. Again, we start by calculating the characteristic polynomial and its roots:

det(A−λ I) =

∣∣∣∣∣∣

3−λ 1 −2

1 3−λ 2

−2 2 −λ

∣∣∣∣∣∣
= −λ 3 +6λ 2−32.

The roots are λ = 4 and λ =−2. To find the eigenvectors for λ = 4, we solve the system of equations

(A−4I)v =



−1 1 −2

1 −1 2

−2 2 −4


v = 0.

The solution space is 2-dimensional, with basis

v1 =




1

1

0


 and v2 =




0

2

1


 .
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To find the eigenvectors for λ =−2, we solve the system of equations

(A+2I)v =




5 1 −2

1 5 2

−2 2 2


v = 0.

The solution space is 1-dimensional, with basis

v3 =




1

−1

2


 .

As predicted by Proposition 11.62, v3 is orthogonal to v1 and v2. However, there is a slight complication:

v1 and v2 are not orthogonal to each other. This is because they are eigenvectors for the same eigenvalue

(λ = 4), not for distinct eigenvalues. We found basis {v1,v2} for the eigenspace for λ = 4, but it doesn’t

happen to be an orthogonal basis. However, we can fix this by applying the Gram-Schmidt method to

{v1,v2}. This yields the orthogonal basis {u1,u2} for the eigenspace for λ = 4, where

u1 =




1

1

0


 and u2 =



−1

1

1


 .

We now have an orthogonal basis {u1,u2,v3} of eigenvectors of the matrix A. We normalize the three

vectors and use them as the columns of P:

P =




1√
2
− 1√

3

1√
6

1√
2

1√
3
− 1√

6

0 1√
3

2√
6


 .

It seems that inverting P will not be all that easy, but in fact, since P is orthogonal, the inverse is just the

transpose:

P−1 = PT =




1√
2

1√
2

0

− 1√
3

1√
3

1√
3

1√
6
− 1√

6

2√
6


 .

We have

P−1AP = D =




4 0 0

0 4 0

0 0 −2


 .

♠
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Exercises

Exercise 11.7.1 For each of the following symmetric matrices, find the eigenvalues, an orthonormal basis

for each eigenspace, and then orthogonally diagonalize the matrix.

(a) A =

[
−1 2

2 2

]
, (b) A =

[
3 1

1 3

]
, (c) A =




1 1 0

1 2 1

0 1 1


 , (d) A =




2 1 2

1 2 2

2 2 5


 .

Exercise 11.7.2 Prove the converse of Theorem 11.63: if a matrix A is orthogonally diagonalizable, then

A is symmetric.

11.8 Positive semidefinite and positive definite matrices

Outcomes

A. Determine whether a matrix is positive semidefinite and/or positive definite, either directly or

by looking at the eigenvalues.

B. Determine whether a matrix is positive semidefinite and/or positive definite using Descartes’

rule of signs.

C. Determine whether a matrix defines an inner product.

In Example 11.3, we saw that it is sometimes possible to define an inner product on Rn from an n× n-

matrix A by the formula

〈u,v〉= uT Av.

We will now explore in more detail under what conditions this formula defines an inner product.

Definition 11.66: Positive semidefinite and positive definite matrices

Let A be an n×n-matrix over the real numbers.

• A is called symmetric if A = AT .

• A is called positive semidefinite if it is symmetric and for all v ∈ Rn, we have vT Av≥ 0.

• A is called positive definite if it is positive semidefinite and vT Av = 0 if and only if v = 0.

Equivalently, the positive definite property can also be stated as follows: A is positive definite if it is

symmetric and for all v ∈ Rn with v 6= 0, we have vT Av > 0.
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Example 11.67: Positive semidefinite and positive definite matrices

Which of the following matrices are positive semidefinite? Which ones are positive definite?

A =

[
2 −1

−1 1

]
, B =

[
1 2

2 1

]
, C =

[
1 −1

−1 1

]
, D =

[
2 0

2 1

]
.

Solution. The matrix A is positive definite. To see why, consider any vector v =

[
x

y

]
. Then

vT Av =
[

x y
][ 2 −1

−1 1

][
x

y

]
= 2x2−2xy+ y2 = x2 +(x− y)2 ≥ 0.

This inequality implies that A is positive semidefinite. Moreover, vT Av = 0 if and only if x = 0 and

x− y = 0, which implies x = y = 0. So v = 0 is the only solution of vT Av = 0, and A is positive definite.

The matrix B is not positive semidefinite (and therefore not positive definite either). For example,

consider v =

[
1

−1

]
. Then

vT Bv =
[

1 −1
][ 1 2

2 1

][
1

−1

]
= 1−2−2+1 = −2 < 0,

showing that B is not positive semidefinite.

The matrix C is positive semidefinite, but not positive definite. To see why, consider v =

[
x

y

]
. Then

vTCv =
[

x y
][ 1 −1

−1 1

][
x

y

]
= x2−2xy+ y2 = (x− y)2 ≥ 0.

Therefore, C is positive semidefinite. However, it is not positive definite because, for example, for v =[
1

1

]
, we have v 6= 0 but vTCv = 0.

The matrix D is not symmetric, and therefore neither positive semidefinite nor positive definite. ♠

The interest of positive definite matrices lies in the following proposition.

Proposition 11.68: Positive definite matrices and inner products on Rn

Let A be an n×n-matrix over the real numbers. Then the formula

〈u,v〉= uT Av

defines an inner product on Rn if and only if A is positive definite. Moreover, every inner product

on Rn arises from some positive definite matrix A in this way.

Proof. Define 〈u,v〉= uT Av. We will check each of the three properties of an inner product from Defini-

tion 11.1. Linearity holds for all matrices A, because

〈u,kv〉 = uT A(kv) = k(uT Av) = k〈u,v〉
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and

〈u,v+v′〉 = uT A(v+v′) = uT Av+uT Av′ = 〈u,v〉+ 〈u,v′〉.
For symmetry, first observe that for all u,v,

〈v,u〉 = vT Au = (vT Au)T = uT AT v.

Therefore 〈u,v〉 = 〈v,u〉 if and only if uT Av = uT AT v. This holds for all u,v if and only if A = AT .

Therefore, symmetry holds if and only if A is symmetric. Finally, the positive definite property of the

inner product holds, by definition, if and only if A is positive definite.

To prove the second part, consider any inner product 〈u,v〉 on Rn. Let e1, . . . ,en be the standard basis

vectors, and define ai j = 〈ei,e j〉. Then A =
[
ai j

]
is a matrix. We claim that 〈u,v〉 = uT Av for all u,v.

Indeed, let u = u1e1 + . . .+unen and v = v1e1 + . . .+ vnen. Then

〈u,v〉 = 〈u1e1 + . . .+unen, v1e1 + . . .+ vnen〉
= u1v1〈e1,e1〉+u1v2〈e1,e2〉+ . . .+unvn〈en,en〉
= u1v1a11 +u1v2a12 + . . .+unvnann

= uT Av.

By the first part, A is positive definite. ♠

Given a symmetric matrix A, it is not always an easy task to determine whether A is positive definite (or

semidefinite) by using the definition directly. This would require checking the condition vT Av≥ 0 for all

vectors v, of which there are infinitely many. The following proposition gives us a more practical method

for determining whether a matrix is positive (semi)definite.

Proposition 11.69: Characterization of positive (semi)definite matrices using eigenvalues

Let A be a symmetric n×n-matrix, and let λ1, . . . ,λn be its eigenvalues. Then A is positive semidef-

inite if and only if λ1, . . . ,λn ≥ 0. Moreover, A is positive definite if and only if λ1, . . . ,λn > 0.

Proof. By Theorem 11.63, we know that A is orthogonally diagonalizable, i.e., D = PT AP, where P is an

orthogonal matrix and

D =




λ1 · · · 0
...

. . .
...

0 · · · λn


 .

Let v = [x1, . . . ,xn]
T be any vector, and let w = Pv. Then wT Aw = vT PT APv = vT Dv, so that A is pos-

itive (semi)definite if and only if D is positive (semi)definite. Also, we have vT Dv = λ1x2
1 + . . .+λnx2

n.

Therefore vT Dv≥ 0 for all v if and only if λ1, . . . ,λn ≥ 0. Moreover, vT Dv > 0 for all v 6= 0 if and only if

λ1, . . . ,λn > 0, as claimed. ♠
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Example 11.70: Using eigenvalues to check whether a matrix is positive definite

Use eigenvalues to determine whether the matrix

A =




5 0 2

0 5 1

2 1 1




is positive definite, positive semidefinite, or neither.

Solution. The characteristic polynomial is

det(A−λ I) =

∣∣∣∣∣∣

5−λ 0 2

0 5−λ 1

2 1 1−λ

∣∣∣∣∣∣
= −λ 3 +11λ 2−30λ = −λ (λ −5)(λ −6).

The eigenvalues are λ1 = 0, λ2 = 5, and λ3 = 6. Therefore, the matrix A is positive semidefinite, but not

positive definite. ♠

While Proposition 11.69 gives us a method to determine whether a matrix A is positive definite (or semidef-

inite), it still requires finding all of the eigenvalues of A, i.e., to factor the characteristic polynomial. This

can be a difficult calculation, especially if the degree of the polynomial is large or if the roots are not inte-

gers. Fortunately, there is a better way to determine whether a matrix is positive definite (or semidefinite)

by directly looking at the characteristic polynomial, without having to calculate its roots. The method was

found by René Descartes in 1637 and is called Descartes’ rule of signs. The general form of Descartes’

rule of signs is actually more complicated than what we consider here. We state a version that has been

specialized to characteristic polynomials of symmetric matrices.

Let a0, . . . ,an be a sequence of real numbers. We say that a0, . . . ,an have strongly alternating signs

if a0 > 0, a1 < 0, a2 > 0, and so on (i.e., ai > 0 when i is even, and ai < 0 when i is odd). We say that

a0, . . . ,an have weakly alternating signs if a0 ≥ 0, a1 ≤ 0, a2 ≥ 0, and so on (i.e., ai ≥ 0 when i is even,

and ai ≤ 0 when i is odd).

Proposition 11.71: Descartes’ rule of signs for positive (semi)definite matrices

Let A be a symmetric n×n-matrix, and let

p(λ ) = anλ n +an−1λ n−1 + . . .+a1λ +a0

be its characteristic polynomial. Then:

• A is positive definite if and only if a0, . . . ,an have strongly alternating signs.

• A is positive semidefinite if and only if a0, . . . ,an have weakly alternating signs.

Proof. We first prove a general fact about polynomials. Suppose d1, . . . ,dn are real numbers and

(x+d1)(x+d2) · · ·(x+dn) = bnxn +bn−1xn−1 + . . .+b1x+b0.

Then d1, . . . ,dn > 0 if and only if b0, . . . ,bn > 0. Moreover, d1, . . . ,dn ≥ 0 if and only if b0, . . . ,bn ≥ 0.
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Proof: To prove the first claim, assume d1, . . . ,dn > 0. It is easy to see that by multiplying out (x+
d1)(x+ d2) · · ·(x+ dn), we can only obtain positive coefficients, so b0, . . . ,bn > 0. Conversely, assume

b0, . . . ,bn > 0. Then for every x≥ 0, we clearly have bnxn +bn−1xn−1 + . . .+b1x+b0 > 0, and therefore

no such x≥ 0 can be a root of this polynomial. In other words, all of the roots must be negative. Since the

roots are −d1, . . . ,−dn, it follows that d1, . . . ,dn > 0. The proof of the second claim (using “≥” instead of

“>”) is similar.

We are now ready to prove Proposition 11.71. By Theorem 11.63, we know that A is diagonalizable,

i.e., A = PDP−1 for some real diagonal matrix D. Note that A and D have the same characteristic polyno-

mial. If d1, . . . ,dn are the diagonal entries of D, the characteristic polynomial can therefore be written in

two different ways:

p(λ ) = (d1−λ )(d2−λ ) · · ·(dn−λ ) = a0 +a1λ +a2λ 2 +a3λ 3 + . . .+anλ n.

Now let λ =−x and consider

p(−x) = (d1 + x)(d2 + x) · · ·(dn+ x) = a0−a1x+a2x2−a3x3 + . . .±anxn.

We have: A is positive definite if and only if d1, . . . ,dn > 0, if and only if a0,−a1,a2,−a3, . . . > 0, if and

only if a0, . . . ,an are strongly alternating. Moreover, A is positive semidefinite if and only if d1, . . . ,dn ≥ 0,

if and only if a0,−a1,a2,−a3, . . .≥ 0, if and only if a0, . . . ,an are weakly alternating. ♠

Example 11.72: Using Descartes’ rule of signs to check if a matrix is positive definite

Use Descartes’ rule of signs to check whether the matrix

A =




5 0 2

0 5 1

2 1 1




is positive definite, positive semidefinite, or neither.

Solution. We already found the characteristic polynomial in Example 11.70: it is−λ 3+11λ 2−30λ . The

coefficients are a0 = 0, a1 =−30, a2 = 11, and a3 =−1. Note that we have included all of the coefficients,

even ones that are zero. Since the signs are weakly alternating, but not strongly alternating, the matrix is

positive semidefinite, but not positive definite. ♠

Example 11.73: Using Descartes’ rule of signs to check if a matrix is positive definite

Use Descartes’ rule of signs to determine which of the following matrices are positive definite

and/or positive semidefinite.

A =




2 1 2

1 1 0

2 0 2


 , B =




2 1 −2

1 1 −1

−2 −1 2


 , C =




2 −1 2

−1 2 0

2 0 3


 .
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Solution. The characteristic polynomials are:

det(A−λ I) = −λ 3 +5λ 2−3λ −2,

det(B−λ I) = −λ 3 +5λ 2−2λ +0,

det(C−λ I) = −λ 3 +7λ 2−11λ +1.

For A, the coefficients are not weakly alternating, so A is not positive semidefinite. For B, the coefficients

are weakly, but not strongly alternating (note that a0 = 0), and therefore B is positive semidefinite, but not

positive definite. For C, the coefficients are strongly alternating, so C is positive definite. ♠

Exercises

Exercise 11.8.1 Determine by direct calculation (i.e., without calculating the characteristic polynomial

or the eigenvalues) which of the following matrices are positive definite, positive semidefinite, or neither.

A =

[
1 1

1 1

]
, B =

[
1 −2

−2 5

]
, C =

[
2 3

1 3

]
, D =




2 1 1

1 1 0

1 0 1


 , E =




1 0 0

0 2 0

0 0 −1


 .

Exercise 11.8.2 Calculate the eigenvalues of each symmetric matrix, then determine for each matrix

whether it is positive definite, positive semidefinite, or neither.

A =

[
2 2

2 5

]
, B =

[
4 −6

−6 9

]
, C =




2 1 0

1 1 −1

0 −1 2


 , D =




3 −4 2

−4 4 0

2 0 4


 .

is positive definite, positive semidefinite, or neither.

Exercise 11.8.3 Which of the following formulas define an inner product on R3? Here, u = [u1,u2,u3]
T

and v = [v1,v2,v3]
T

.

(a) 〈u,v〉= u1v1 +2u1v2 +2u2v1 +3u2v2 +3u3v3.

(b) 〈u,v〉= u1v1−u1v2−u2v1 +2u2v2 +u3v3.

(c) 〈u,v〉= u1v1−u1v2−u2v1 +u2v2 +4u3v3.

(d) 〈u,v〉= u1v1−u1v2−u2v1 +3u2v2−u2v3−u3v2 +u3v3.

Exercise 11.8.4 Use Descartes’ rule of signs to determine which of the following matrices are positive

definite and/or positive semidefinite.

A =

[
2 2

2 1

]
, B =




2 −1 0

−1 1 0

0 0 1


 , C =




2 1 −1 1

1 1 0 0

−1 0 2 −1

1 0 −1 1


 .
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11.9 Application: Simplification of quadratic forms

Outcomes

A. Determine whether or not a function of several variables is a quadratic form.

B. Convert a quadratic form to and from matrix form.

C. Apply a change of variables to a quadratic form.

D. Diagonalize a quadratic form.

E. Find the principal axes of a quadratic form.

F. Sketch quadratic curves, such as circles and ellipses.

In this section, we will explore an application of the diagonalization of symmetric matrices, namely, the

simplification of quadratic forms. Quadratic forms are special kinds of functions that arise, for example,

in calculus when we approximate some quantity up to terms of second order.

Definition 11.74: Quadratic form

A quadratic form is a polynomial in n variables in which each term is of degree 2. For example,

the following is a quadratic form in 3 variables:

f (x,y,z) = 3x2 +3y2 +2xy−4xz+4yz.

More generally, a quadratic form is a function of the form

f (x1, . . . ,xn) = q1 x2
1 + . . .+qn x2

n +q12 x1x2 + . . .+qi j xix j + . . .+qn−1,n xn−1xn.

The numbers q1, . . . ,qn,q12, . . . ,qn−1,n, which may be positive, negative, or zero, are called the

coefficients of the quadratic form.

Example 11.75: Quadratic forms

Which of the following are quadratic forms?

(a) f (x,y,z) = 2xy+3xz−5yz.

(b) g(x,y,z) = x2 +2xy+ y2 +3.

(c) h(x,y,z) = (x+ y)2− z2.

Solution. The function f is a quadratic form. The function g is not a quadratic form, because the constant

term, +3, is not of degree 2. It should be either a coefficient times the square of a variable, or a coefficient
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times the product of two variables. The function h is a quadratic form. We can simplify it to h(x,y,z) =
x2 +2xy+ y2− z2. ♠

Definition 11.76: Matrix form of a quadratic form

Let A be a symmetric n×n-matrix, and let v = [x1, . . . ,xn]
T . Then

f (x1, . . . ,xn) = vT Av

is a quadratic form in n variables. Conversely, every quadratic form in n variables can be uniquely

written in this way. We call this the matrix form of the quadratic form.

Example 11.77: Matrix form of a quadratic form

Find the coefficients of the quadratic form f (x,y,z) = vT Av, where

A =




1 2 4

2 0 −1

4 −1 −2


 .

Solution. We have

f (x,y,z) =
[

x y z
]



1 2 4

2 0 −1

4 −1 −2






x

y

z


 = x2−2z2 +4xy+8xz−2yz.

Note that there is a term 2xy and a term 2yx, which together yield 4xy. Similarly the term 4xz and 4zx are

combined into 8xz, and the terms −yz and −zy are combined into −2yz. ♠

Example 11.78: Matrix form of a quadratic form

Write the quadratic form

f (x,y,z) = 5x2− y2 + z2 +2xy−4xz+3yz

in matrix form.

Solution. We can write this as

f (x,y,z) =
[

x y z
]



5 1 −2

1 −1 1.5

−2 1.5 1






x

y

z


 .

Note: since the matrix A must be symmetric, we have no choice but to split the term 2xy evenly into 1xy

and 1yx. This explains why the (1,2)- and (2,1)-entries of the matrix are 1. Also,−4xz has been split into

−2xz and −2zx, and 3yz has been split into 1.5yz and 1.5zy. In general, the matrix of the quadratic form

f (x,y,z) = ax2 +by2 + cz2 +dxy+ exz+ f yz
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is

A =




a d
2

e
2

d
2 b

f
2

e
2

f
2 c


 .

♠

We will now turn to the question of how to simplify quadratic forms. The primary tool we have for doing

so is a change of variables. This means replacing the variables x1, . . . ,xn by new variables y1, . . . ,yn that

are linear combinations of x1, . . . ,xn.

Example 11.79: Change of variables

Apply the change of variables

x = u

y = v−w

z = w

to the quadratic form

3x2 + y2 +2xy+2xz+2yz

Solution. We have
3x2 + y2 +2xy+2xz+2yz

= 3u2 +(v−w)2 +2u(v−w)+2uw+2(v−w)w
= 3u2 + v2−w2 +2uv.

♠

The simplest kind of quadratic form is one that involves only squared variables, and no products of two

different variables. We call such quadratic forms diagonal.

Definition 11.80: Diagonal quadratic form

A quadratic form is diagonal if it is of the form

f (x1, . . . ,xn) = q1 x2
1 + . . .+qn x2

n.

Proposition 11.81: Diagonalization of quadratic forms

Every quadratic form can be made diagonal by a change of variables.

Proof. We first write the quadratic form in matrix form, i.e.,

f (x1, . . . ,xn) = vT Av,
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where A is a symmetric matrix and v = [x1, . . . ,xn]
T . By Theorem 11.63, A is orthogonally diagonalizable.

So let P be an orthogonal matrix such that

P−1AP = PT AP = D =




λ1 · · · 0
...

. . .
...

0 · · · λnn




is diagonal. Let w = [y1, . . . ,yn]
T be a new set of variables such that v = Pw. Then

vT Av = wT PT APw = wT Dw = λ1y2
1 + . . .+λny2

n.

So the quadratic form is diagonal in the variables y1, . . . ,yn. ♠

Example 11.82: Diagonalization of quadratic forms

Consider the quadratic form

f (x,y) = 3x2 +4xy+6y2.

Perform a change of variables so that the quadratic form becomes diagonal.

Solution. We first write f (x,y) in matrix form:

f (x,y) =
[

x y
][ 3 2

2 6

][
x

y

]
.

Next, we orthogonally diagonalize the matrix A=

[
3 2

2 6

]
. In Example 11.64, we found that P−1AP=D,

where

P =
1√
5

[
1 −2

2 1

]
and D =

[
7 0

0 2

]
.

Since P is orthogonal, we also have PT AP = D. Next, let u,v be new variables such that

[
x

y

]
= P

[
u

v

]
=

[
(u−2v)/

√
5

(2u+ v)/
√

5

]

Then the change of variables gives

f (x,y) =
[

x y
]

A

[
x

y

]
=
[

u v
]

PT AP

[
u

v

]
=
[

u v
]

D

[
u

v

]
= 7u2 +2v2.

♠

Example 11.83: Diagonalization of quadratic forms

Diagonalize the quadratic form

f (x,y,z) = 3x2 +3y2 +2xy−4xz+4yz.
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Solution. The matrix form of f (x,y,z) is

f (x,y,z) =
[

x y z
]



3 1 −2

1 3 2

−2 2 0






x

y

z


= vT Av.

We orthogonally diagonalize the matrix A. In Example 11.64, we found that P−1AP = D, where

P =




1√
2
− 1√

3
1√
6

1√
2

1√
3
− 1√

6

0 1√
3

2√
6


 and D =




4 0 0

0 4 0

0 0 −2


 .

Let u,v,w be new variables such that 


x

y

z


= P




u

v

w


 .

Then the change of variables gives

f (x,y,z) =
[

x y z
]

A




x

y

z




=
[

u v w
]

PT AP




u

v

w




=
[

u v w
]

D




u

v

w




= 4u2 +4v2−2w2.

♠

Next, we turn our attention to the task of sketching the solutions of quadratic equations in 2 or more

variables.

Example 11.84: Sketching circles and ellipses

Sketch the following curves:

(a) x2 + y2 = 1,

(b) x2 +2y2 = 1.
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Solution. (a) The curve x2 + y2 = 1 is the familiar unit circle.

x

y

−1 1

−1

1

(b) The curve x2 + 2y2 = 1 is the same, except that it has been stretched by a factor of 1/
√

2 in the

y-direction. In other words, it is an ellipse with x-intercepts ±1 and y-intercepts ±1/
√

2.

x

y

−1 1

− 1√
2

1√
2

♠

In general, for a,b > 0, the curve ax2 + by2 = 1 is an ellipse with x-intercepts ±1/
√

a and y-intercepts

±1/
√

b. Similarly, for a,b,c > 0, the equation ax2 + by2 + cz2 = 1 describes a 3-dimensional ellipsoid

with x-intercepts ±1/
√

a, y-intercepts ±1/
√

b, and z-intercepts ±1/
√

c:

x
y

z

1√
a

1√
b

1√
c

Each ellipse or ellipsoid has a set of principal axes, which are its axes of symmetry. When the quadratic

forms are diagonal, as in the above examples, the principal axes are the standard coordinate axes. When
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the quadratic forms are not diagonal, the principal axes are the eigenvectors of the matrix A. This is the

content of the following proposition.

Proposition 11.85: Principal axes of a quadratic form

Consider a quadratic form in matrix form, f (v) = vT Av, where A is a positive definite n×n-matrix.

Let {u1, . . . ,un} be an orthonormal set of eigenvectors of A, and let λ1, . . . ,λn be the corresponding

eigenvalues. Then the solutions of the equation

vT Av = 1

form an n-dimensional ellipsoid whose principal axes are parallel to u1, . . . ,un and whose ui-

intercepts are ± 1√
λi

.

Proof. Let P be the orthogonal matrix whose columns are u1, . . . ,un. From the proof of Proposition 11.81,

we know that the equation vT Av = 1 is equivalent to λ1y2
1 + . . .+λny2

n = 1, where y1, . . . ,yn are variables

such that

v = P




y1
...

yn


 . (11.5)

Since A is positive definite, we have λ1, . . . ,λn > 0 by Proposition 11.69. We therefore know that in

the (y1, . . . ,yn)-coordinate system, the equation λ1y2
1 + . . .+ λny2

n = 1 describes an ellipsoid whose y1-

intercepts are ±1/
√

λ1, whose y2-intercepts are ±1/
√

λ2, and so on. The only thing that remains to do

is to figure out the direction of the coordinate axes. The y1-axis points in the direction of the point with

coordinates (y1, . . . ,yn) = (1,0, . . . ,0). Using the change of variables formula (11.5), we find that this

corresponds to the first column of P, i.e., v = u1. Similarly, the y2-axis points in the direction of u2, and

so on. ♠

Example 11.86: Sketching a quadratic curve

Sketch the curve 3x2 +4xy+6y2 = 1.

Solution. The matrix for the quadratic form 3x2 +4xy+6y2 is

A =

[
3 2

2 6

]
.

From Example 11.82, we know that the normalized eigenvectors of A are

u1 =
1√
5

[
1

2

]
and u2 =

1√
5

[
−2

1

]
,
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with respective eigenvalues λ1 = 7 and λ2 = 2. Therefore, by Proposition 11.85, the curve 3x2 + 4xy+
6y2 = 1 is an ellipse with principal axes u1 and u2, and with respective intercepts ±1/

√
7 and ±1/

√
2.

x

y

−1 1

−1

1

−1

1

−1

1

− 1√
7

1√
7

− 1√
2

1√
2

u1

u2

♠

Exercises

Exercise 11.9.1 Which of the following are quadratic forms?

(a) f1(x,y,z) = (x+ y+ z)2.

(b) f2(x,y,z) = x2 + y2 + z2.

(c) f3(x,y,z) = (x+ y)2 +(x+ z)2 +(y+ z)2.

(d) f4(x,y,z) = x2− y2.

(e) f5(x,y,z) = x2 +2xyz+(y+ z)2.

(f) f6(x,y,z) = x(y+ z).

(g) f7(x,y,z) = x2y2z2.

Exercise 11.9.2 Find the coefficients of the quadratic form f (x,y,z) = vT Av, where

A =




0 1 2

1 −3 −4

2 −4 5


 .
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Exercise 11.9.3 Write the quadratic form

f (x,y,z) = (x+ y)2 +2(x− z)2 +3yz

in matrix form.

Exercise 11.9.4 Apply the change of variables x = u+2w, y = v, z = w− v to the quadratic form

x2 +7y2 +5z2−4xy−4xz+11yz.

Exercise 11.9.5 Perform a change of variables so that the quadratic form f (x,y) = 3x2−2xy+3y2 be-

comes diagonal.

Exercise 11.9.6 Diagonalize the quadratic form

f (x,y,z) = 3x2 +3y2 +4z2 +2xz−2yz.

Exercise 11.9.7 Find the principal axes of the following curves, and sketch them:

(a) x2 + 1
2y2 = 1,

(b) 2x2 +4xy+5y2 = 1.

(c) 3x2 +2xy+3y2 = 1.

Exercise 11.9.8 Find the principal axes of the ellipsoid 2x2 +2y2 +3z2 +2xz−2yz.

11.10 Complex inner product spaces

Outcomes

A. Compute dot products in Cn.

B. Use properties of the complex dot product to prove equalities and inequalities.

C. Compute the adjoint of a matrix.

D. Check whether an operation is a complex inner product.

E. Determine whether vectors in a complex inner product space are orthogonal.

F. Calculate the complex Fourier coefficients of a vector.

G. Use the Gram-Schmidt procedure to find an orthogonal basis of a subspace of a complex inner

product space.

H. Compute the orthogonal projection of a complex vector onto a subspace.



11.10. Complex inner product spaces 457

So far, in this chapter, the field K was always R, the set of real numbers. The reason we have not con-

sidered inner products over other fields K is that the positive definite property requires 〈u,u〉 ≥ 0, and the

requirement that a scalar is “greater or equal to 0” does not make sense if K is, say, the field of integers

modulo p.

In this section, we will consider inner product spaces over the complex numbers. It turns out that the

theory of complex inner product spaces is similar, but not completely identical, to that of real inner product

spaces. To explain the difference, consider the definition of the dot product. In Rn, the dot product of two

vectors

v =




x1
...

xn


 and w =




y1
...

yn




is defined to be

v·w = x1y1 + . . .+ xnyn.

One of the most important properties of the dot product is positivity: for all v, we have

v·v = x2
1 + . . .+ x2

n ≥ 0.

The reason positivity holds is that the square of a real number is always greater or equal to 0. If we blindly

replaced x1, . . . ,xn by complex numbers and kept the same definition of dot product, positivity would no

longer hold. This is because for a complex number z, it is not in general true that z2 ≥ 0. In fact, z2 may

not be a real number, and even in cases where z2 is real, it may not be positive. For example, if z = i, then

z2 =−1.

Fortunately, all is not lost: the complex numbers actually do have a useful positivity property. Namely,

if z = a+bi is a complex number and z = a−bi is its complex conjugate, then

zz = (a−bi)(a+bi) = a2 +b2 ≥ 0.

So instead of squaring a complex number, we should multiply it by its conjugate. With this in mind, we

arrive at the following definition of dot product on Cn:

Definition 11.87: The dot product on Cn

Let

v =




v1
...

vn


 and w =




w1
...

wn




be vectors in Cn. Their (complex) dot product is defined to be

v·w = v1w1 + . . .+ vnwn.

The complex dot product satisfies properties that are similar to, but not exactly the same as, the properties

satisfied by the real dot product.



458 Inner product spaces

Proposition 11.88: Properties of the complex dot product

The dot product satisfies the following properties, where u,v,w ∈ Cn and k,ℓ ∈ C.

• Conjugate symmetry: u·v = v·u.

• Linearity on the right: u·(kv+ ℓw) = k(u·v)+ ℓ(u·w).

• Antilinearity on the left: (ku+ ℓv)·w = k(u·w)+ ℓ(v·w).

• The positive definite property: u·u≥ 0, and u·u = 0 if and only if u = 0.

We note that the complex dot product can be equivalently expressed as a matrix product, namely

v·w =
[

v1 · · · vn

]



w1
...

wn


 = vT w.

Here, v denotes the complex conjugate of a vector (i.e., taking the complex conjugate of each component

of a vector), and (−)T denotes the transpose as usual. As a matter of fact, when working with complex

vectors and matrices, it turns out that we should almost always take the complex conjugate at the same

time as taking the transpose. For this reason, we introduce a special name and notation for the conjugate

transpose of a vector or matrix.

Definition 11.89: Adjoint of a matrix

Let A be a complex m× n-matrix. The adjoint of A, denoted A∗, is the transpose of the complex

conjugate of A. In symbols:

A∗ = AT .

With this definition, we can also write the dot product as

v·w = v∗w.

We are now ready to state the definition of a complex inner product, which is a generalization of the

complex dot product.

Definition 11.90: Complex inner product space

A complex inner product space is a complex vector space V equipped with an operation that

assigns to any pair of vectors u,v ∈V a complex number 〈u,v〉, called the inner product of u and

v, satisfying the following properties:

1. Conjugate symmetry: 〈u,v〉= 〈v,u〉.

2. Linearity on the right: 〈u,kv+ ℓw〉= k〈u,v〉+ ℓ〈u,w〉.

3. Antilinearity on the left: 〈ku+ ℓv,w〉= k〈u,w〉+ ℓ〈v,w〉.

4. The positive definite property: 〈u,u〉 ≥ 0, and 〈u,u〉= 0 if and only if u = 0.
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Note that conjugate symmetry implies that 〈u,u〉 is a real number for every vector u. Namely, let z= 〈u,u〉.
Then by conjugate symmetry, we have

z = 〈u,u〉= 〈u,u〉= z.

Since z is equal to its own conjugate, it must be a real number. Therefore, the positive definite property

makes sense: when we require that 〈u,u〉 ≥ 0, we are talking about a real number that is greater than or

equal to 0. (It would not in general make sense to ask whether a complex number is greater than or equal

to 0).

The space Cn with the complex dot product is evidently an example of a complex inner product space.

Here is another example:

Example 11.91: Complex-valued continuous functions

Let a < b be real numbers, and let C[a,b] be the space of continuous, complex-valued functions

f : [a,b]→ C. Given two such functions f ,g ∈C[a,b], we define their inner product as

〈 f ,g〉=
∫ b

a
f (x)g(x)dx.

With this operation, C[a,b] is a complex inner product space.

Armed with this definition of complex inner products, we can now pretty much redo everything we did for

real inner products in the complex case. The only thing we have to be careful about is to put the complex

conjugate operation in the correct places.

• The norm of a vector in a complex inner product space is defined to be ‖u‖ =
√
〈u,u〉. This

definition makes sense because 〈u,u〉 ≥ 0.

• The Cauchy-Schwarz inequality |〈u,v〉| ≤ ‖u‖‖v‖ and the triangle inequality ‖u+v‖ ≤ ‖u‖+
‖v‖ hold in complex inner product spaces.

• Two vectors u,v in a complex inner product space are called orthogonal, in symbols u ⊥ v, if

〈u,v〉= 0.

• A vector u in a complex inner product space is called normalized if ‖u‖= 1.

• A set of vectors {u1, . . . ,un} is called an orthogonal set if the vectors are non-zero and pairwise

orthogonal, and an orthonormal set if the vectors are moreover normalized.

• If u1, . . . ,uk are orthogonal, then ‖a1u1 + . . .+akuk‖2 = |a1|2‖u1‖2+ . . .+ |ak|2‖uk‖2. The absolute

value signs are necessary because aiai = |ai|2.
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Example 11.92: Orthogonal vectors

Consider C2 with the complex dot product, and the following vectors:

u =

[
1

i

]
, v =

[
−i

1

]
, and w =

[
i

1

]
.

Are u and v orthogonal? Are u and w orthogonal?

Solution. We have

〈u,v〉= u∗v =
[

1 −i
][ −i

1

]
=−i− i =−2i 6= 0,

so u and v are not orthogonal. We have

〈u,w〉= u∗w =
[

1 −i
][ i

1

]
= i− i = 0,

so u and w are orthogonal. Note that it is crucial here that we did not forget to take the complex conjugate

of u, or else we would have gotten a different answer. ♠

In some formulas, we must be careful about whether we use 〈v,w〉 or 〈w,v〉. Although this did not make

any difference in the case of real inner products, it does make a difference for complex inner products,

because in general, 〈v,w〉 6= 〈w,v〉. In particular, we have to be careful about this in the formulas for

Fourier coefficients, projections, and the Gram-Schmidt procedure.

Example 11.93: Complex Fourier coefficients

Let {u1, . . . ,un} be an orthogonal set of vectors in a complex inner product space, and let

v = a1u1 + . . .+anun.

Which of the following formulas is correct?

ai =
〈v,ui〉
〈ui,ui〉

or ai =
〈ui,v〉
〈ui,ui〉

?

Solution. To check whether the first formula is correct, we calculate

〈v,ui〉
〈ui,ui〉

=
〈a1u1 + . . .+aiui + . . .+anun,ui〉

〈ui,ui〉

= a1
〈u1,ui〉
〈ui,ui〉

+ . . .+ai
〈ui,ui〉
〈ui,ui〉

+ . . .+an
〈un,ui〉
〈ui,ui〉

= a1 ·0+ . . .+ai ·1+ . . .+an ·0
= ai.

Note that because of antilinearity, this formula came out to be ai, and not ai. Therefore, the first formula

is not correct. The check the second formula, we calculate

〈ui,v〉
〈ui,ui〉

=
〈ui,a1u1 + . . .+aiui + . . .+anun〉

〈ui,ui〉
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= a1
〈ui,u1〉
〈ui〉

+ . . .+ai
〈ui,ui〉
〈ui,ui〉

+ . . .+an
〈ui,un〉
〈ui,ui〉

= a1 ·0+ . . .+ai1+ . . .+an ·0
= ai.

Therefore, the second formula is correct. ♠

Since this is an important result, we state it as a proposition.

Proposition 11.94: Complex Fourier coefficients

If {u1, . . . ,un} is an orthogonal set of vectors in a complex inner product space and

v = a1u1 + . . .+anun,

then

ai =
〈ui,v〉
〈ui,ui〉

and ai =
〈v,ui〉
〈ui,ui〉

.

Example 11.95: Calculating complex Fourier coefficients

Suppose that B = {u1,u2,u3} is an orthogonal basis for a complex inner product space V , such that

‖u1‖= 1, ‖u2‖=
√

5, and ‖u3‖= 2. Moreover, suppose that v ∈V is a vector such that 〈u1,v〉= i,

〈u2,v〉=−2, and 〈u3,v〉= 1−2i. Find the coordinates of v with respect to B.

Solution. We need to find a1,a2,a3 such that v = a1u1 +a2u2 +a3u3. By Proposition 11.94, we have

a1 =
〈u1,v〉
〈u1,u1〉

=
〈u1,v〉
‖u1‖2

=
i

1
= i,

a2 =
〈u2,v〉
〈u2,u2〉

=
〈u2,v〉
‖u2‖2

=
−2

5
= − 2

5
,

a3 =
〈u3,v〉
〈u3,u3〉

=
〈u3,v〉
‖u3‖2

=
1−2i

4
=

1

4
− 1

2
i.

♠

The Gram-Schmidt orthogonalization procedure works without changes in complex inner product spaces,

as long as we are careful not to confuse 〈ui,v j〉 with 〈v j,ui〉.
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Proposition 11.96: Complex Gram-Schmidt orthogonalization procedure

Let {v1, . . . ,vk} be a basis for some subspace W of a complex inner product space V . Define vectors

u1, . . . ,uk as follows:

u1 = v1,

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1,

u3 = v3 −
〈u1,v3〉
〈u1,u1〉

u1 −
〈u2,v3〉
〈u2,u2〉

u2,

...

uk = vk −
〈u1,vk〉
〈u1,u1〉

u1 −
〈u2,vk〉
〈u2,u2〉

u2 − . . . − 〈uk−1,vk〉
〈uk−1,uk−1〉

uk−1.

Then {u1, . . . ,uk} is an orthogonal basis of W .

Example 11.97: Complex Gram-Schmidt orthogonalization procedure

Consider C3 with the complex dot product. Let

v1 =




1+ i

1

i


 and v2 =




i

−1

−3




Use the Gram-Schmidt procedure to find an orthogonal basis for span{v1,v2}.

Solution. We start with

u1 = v1 =




1+ i

1

i


 .

Next, we calculate

〈u1,v2〉 = u∗1v2 =
[

1− i 1 −i
]



i

−1

−3


 = (1− i)i+1(−1)+(−i)(−3) = 4i

and

〈u1,u1〉 = u∗1u1 =
[

1− i 1 −i
]



1+ i

1

i


 = (1− i)(1+ i)+1 ·1+(−i)(i) = 4.

Therefore

u2 = v2−
〈u1,v2〉
〈u1,u1〉

u1 = v2−
4i

4
u1 = v2− iu1 =




i

−1

−3


− i




1+ i

1

i


 =




1

−1− i

−2


 .
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The desired orthogonal basis is {u1,u2}. We double-check that u1 and u2 are indeed orthogonal:

〈u1,u2〉 = u∗1u2 =
[

1− i 1 −i
]



1

−1− i

−2


 = (1− i)1+1(−1− i)+(−i)(−2) = 0.

♠

Orthogonal projections also work in complex inner product spaces.

Proposition 11.98: Orthogonal projection onto a subspace

Let V be a complex inner product space, and let W be a subspace of V . Assume {u1, . . . ,uk} is an

orthogonal basis of W , and v ∈V is any vector. Let

v′ =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2 + . . .+
〈uk,v〉
〈uk,uk〉

uk.

Then v′ is the best approximation of v in W , i.e., it is the element of W such that ‖v−v′‖ is as

small as possible. Moreover, the vector v−v′ is orthogonal to W . We say that v′ is the orthogonal

projection of v onto W .

Example 11.99: Orthogonal projection onto a subspace

Consider the subspace of C3 spanned by

u1 =




1

i

0


 and u2 =




i

1

1


 .

With respect to the complex dot product, find the best approximation of v =




0

2

4


 in this subspace.

Solution. First notice that 〈u1,u2〉= 0, so that u1 and u2 are orthogonal. Therefore, the best approximation

is given by

v′ =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2.

We calculate the relevant inner products:

〈u1,v〉 =
[

1 −i 0
]



0

2

4


 = −2i,

〈u2,v〉 =
[
−i 1 1

]



0

2

4


 = 6,
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〈u1,u1〉 =
[

1 −i 0
]



1

i

0


 = 2,

〈u2,u2〉 =
[
−i 1 1

]



i

1

1


 = 3.

Therefore,

v′ =
〈u1,v〉
〈u1,u1〉

u1 +
〈u2,v〉
〈u2,u2〉

u2. =
−2i

2
u1 +

6

3
u2 = − i




1

i

0


+2




i

1

1


 =




i

3

2


 .

To double-check the answer, we can check that v−v′ is indeed orthogonal to u1 and u2. We have

v−v′ =



−i

−1

2




and

〈u1,v−v′〉 =
[

1 −i 0
]


−i

−1

2


 = 0,

〈u2,v−v′〉 =
[
−i 1 1

]


−i

−1

2


 = 0.

♠

We finish this section with some remarks on the differences between the notations used in mathematics and

in physics. Complex inner product spaces are very important in physics because they are the foundation

of quantum mechanics. The adjoint of a matrix A is usually denoted A∗ in mathematics and A† in physics.

In quantum mechanics, a column vector v is often written |v〉, and the corresponding row vector v∗ is then

written as 〈v|. This is the so-called Dirac notation. With this convention, an inner product v∗w is 〈v||w〉,
which is usually written as 〈v|w〉. Also, the matrix vw∗ is written |v〉〈w| and is called an outer product. In

mathematics, it is customary for inner products to be linear in the left component and antilinear in the right

component. In physics, it is customary to use the opposite convention, i.e., inner products are antilinear in

the left component and linear in the right component. In this book, we have used the physics convention

of antilinearity in the left component, because it is the better convention.

Exercises

Exercise 11.10.1 Compute the following complex dot products in Cn:

(a)

[
1

i

]
·
[

1+ i

2

]
, (b)




2

1

i


·



i

1

−3


 , (c)




i

1

−3


·



2

1

i


 , (d)




i

i+1

1


·



1+2i

−2

−i


 .
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Exercise 11.10.2 Compute the norm of each of the following vectors in Cn:

(a)

[
1

i

]
, (b)




1

0

1+2i


 , (c)




1+ i

1− i

3i


 .

Exercise 11.10.3 Suppose u,v ∈ Cn and u·u = 1, v·v = 2, and u·v = 2i. Then compute:

(a) (2u+v)·(u−v).

(b) (iu−v)·(u−2iv).

Exercise 11.10.4 Compute the adjoint of the following matrices.

(a)




i

i−1

2


 , (b)

[
1 i

−i 2

]
, (c)

[
2 1+ i −i

1− i 3 2+2i

]
.

Exercise 11.10.5 Suppose u and v are vectors in a complex inner product space such that 〈u,u〉 = 3,

〈v,v〉= 2, and 〈u,v〉= i+1. Then compute:

(a) 〈u+2v,u− iv〉.

(b) 〈u− iv,2u+v〉.

Exercise 11.10.6 In C[0,2π ], consider the functions f (x)= sinx+ icosx, g(x)= 1, and h(x)= x. Compute

the following:

(a) 〈 f ,g〉, (b) 〈 f ,h〉, (c) 〈 f , f 〉, (d) ‖ f‖ .

Exercise 11.10.7 Which of the following vectors, if any, are orthogonal?

u1 =




1

i

0


 , u2 =




1

−i

1


 , u3 =




0

1

−i


 , u4 =




0

0

1


 .

Exercise 11.10.8 Suppose that B = {u1,u2,u3} is an orthogonal basis for a complex inner product space

V , such that ‖u1‖ =
√

2, ‖u2‖ = 2, and ‖u3‖ =
√

3. Moreover, suppose that v ∈ V is a vector such that

〈u1,v〉= 1, 〈u2,v〉= 3i, and 〈u3,v〉= 1− i. Find the coordinates of v with respect to B.

Exercise 11.10.9 Consider C3 with the complex dot product. Let

v1 =




0

i

2


 and v2 =




1

1+ i

3i+2



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Use the Gram-Schmidt procedure to find an orthogonal basis for span{v1,v2}. Then find an orthonormal

basis.

Exercise 11.10.10 Consider the subspace of C3 spanned by the orthogonal vectors

u1 =




2

i

1


 and u2 =




i

3

i


 .

Find the best approximation of v =



−2i

3

4i


 in this subspace.

11.11 Unitary and hermitian matrices

Outcomes

A. Determine whether a complex linear transformation is an isometry and/or unitary.

B. Determine whether a complex matrix is unitary.

C. Determine whether a complex matrix is hermitian.

D. Calculate the eigenvalues and eigenvectors of a hermitian matrix.

E. Compute an orthogonal basis of eigenvectors for a hermitian matrix.

F. Unitarily diagonalize a hermitian matrix.

In the context of real inner product spaces, we studied orthogonal functions, orthogonal matrices, and

symmetric matrices. The corresponding concepts in the context of complex inner product spaces are

unitary functions, unitary matrices, and hermitian matrices. We will introduce these concepts in this

section. Since the proofs are similar to those in Section 11.6, we omit most of them.

Definition 11.100: Isometries and unitary maps of complex inner product spaces

Let V ,W be complex inner product spaces. A linear transformation T : V →W is called an isometry

if for all u,v ∈V ,

〈T (u),T (v)〉= 〈u,v〉.
An isometry that is also invertible is called a unitary transformation, or simply unitary.

In the case of real inner product spaces, we found in Proposition 11.56 that a square matrix P is the matrix

of an orthogonal transformation (with respect to orthonormal bases) if and only if PT P = I. In the complex

case, we have an analogous property, except that we must use the adjoint instead of the transpose.
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Proposition 11.101: The matrix of a unitary transformation

Let T : V →W be a linear transformation between finite-dimensional complex inner product spaces

V and W . Let B and C be orthonormal bases of V and W , respectively, and let P = [T ]C,B be the

matrix of T with respect to the bases B and C. Then

(a) T is an isometry if and only if P∗P = I.

(b) T is unitary if and only if P∗P = I and dimV = dimW .

This motivates the following definition. We therefore define a unitary matrix to be an n×n-matrix satis-

fying P∗P = I.

Definition 11.102: Unitary matrix

An n×n-matrix P is called unitary if P∗P = I.

We have the following analogue of Proposition 11.59:

Proposition 11.103: Conditions for unitary matrices

The following are equivalent for a complex n×n-matrix P:

(a) P is unitary.

(b) P∗P = I.

(c) P is invertible and P−1 = P∗.

(d) PP∗ = I.

(e) P∗ is unitary.

(f) The columns of P form an orthonormal set of vectors.

(g) The rows of P form an orthonormal set of vectors.

Example 11.104: Unitary matrices

Determine which of the following matrices are unitary.

A =

[
1 0

0 i

]
, B =

1√
2

[
1 i

i 1

]
, C =

1√
2

[
1 i

−i 1

]
.

Solution. We have

A∗A =

[
1 0

0 −i

][
1 0

0 i

]
=

[
1 0

0 1

]
= I,
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so A is unitary. Similarly, we have

B∗B =
1

2

[
1 i

i 1

][
1 −i

−i 1

]
=

1

2

[
2 0

0 2

]
= I,

so B is unitary as well. On the other hand,

C∗C =
1

2

[
1 i

−i 1

][
1 i

−i 1

]
=

1

2

[
2 2i

−2i 2

]
6= I,

so C is not unitary. Equivalently, we could have checked whether the columns of A, B, and C form

an orthonormal set of vectors (they do, in the case of A and B, but don’t, in the case of C. See also

Example 11.92). ♠

Of course, if P happens to be a matrix with real entries, then P is unitary if and only if it is orthogonal,

because in that case P∗ = P
T
= PT .

Recall that a matrix A is called symmetric if A = AT . In the complex world, we are more often

interested in the property A = A∗. A matrix with this property is called hermitian (after the French

mathematician Charles Hermite, 1822–1901).

Definition 11.105: Hermitian matrix

A complex n×n-matrix A is called hermitian if A = A∗.

Example 11.106: Hermitian vs. symmetric matrices

Which of the following matrices are hermitian? Which ones are symmetric?

A =

[
1 2

2 1

]
, B =

[
1 2i

2i 1

]
, C =

[
1 2i

−2i 1

]
, D =

[
i 2

2 i

]
.

Solution. The matrix A is symmetric and also hermitian. The matrix B is symmetric but not hermitian. In

fact, we have

B∗ =

[
1 −2i

−2i 1

]
6= B.

The matrix C is hermitian but not symmetric. The matrix D is symmetric but not hermitian. ♠

A matrix A =
[
ai j

]
is hermitian if and only if ai j = a ji, for all i, j. In particular, the diagonal entries of a

hermitian matrix are always real, and the off-diagonal entries come in complex conjugate pairs. If all of

the entries in a matrix A are real, then A is hermitian if and only if it is symmetric.

Hermitian matrices are of interest, among other things, because their eigenvalues are always real.

Moreover, eigenvectors for distinct eigenvalues are orthogonal. The following proposition is analogous to

Proposition 11.62.
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Proposition 11.107: Eigenvalues and eigenvectors of hermitian matrices

Let A be a hermitian matrix. Then

(a) All eigenvalues of A are real.

(b) Eigenvectors for distinct eigenvalues of A are orthogonal.

Proof. (a) Suppose λ is an eigenvalue of A, with eigenvector v. We will evaluate v∗Av in two different

ways:

v∗Av = v∗(Av) = v∗(λv) = λv∗v,

v∗Av = (v∗A)v = (v∗A∗)v = (Av)∗v = (λv)∗v = λv∗v.

Therefore, λv∗v = λv∗v. Since v∗v is non-zero, this implies λ = λ , i.e., λ is real.

(b) Suppose v and w are eigenvectors for eigenvalues λ and µ , respectively, and λ 6= µ . From part (a), we

know that both λ and µ are real. By evaluating v∗Aw in two different ways, we find that

v∗Aw = v∗(Aw) = v∗(µw) = µv∗w,

v∗Aw = (v∗A)w = (A∗v)∗w = (Av)∗w = (λv)∗w = λv∗w.

Therefore, µv∗w = λv∗w, or equivalently (λ − µ)v∗w = 0. Since by assumption, λ − µ 6= 0, we must

have v∗w = 0, i.e., v⊥ w. ♠

We say that a matrix A is unitarily diagonalizable if there exists a unitary matrix P and a diagonal

matrix D such that D = P−1AP. The following is the main theorem about the diagonalization of hermitian

matrices. It is analogous to Theorem 11.63 in the real case.

Theorem 11.108: Diagonalization of hermitian matrices

Every hermitian matrix A is unitarily diagonalizable as D = P−1AP. Moreover, the entries of D are

real.

Example 11.109: Diagonalization of hermitian matrices

The matrix

A =

[
3 −2i

2i 6

]

is hermitian. Unitarily diagonalize A, i.e., find a unitary matrix P and a real diagonal matrix D such

that D = P−1AP.

Solution. The characteristic polynomial is

det(A−λ I) =

∣∣∣∣
3−λ −2i

2i 6−λ

∣∣∣∣= (3−λ )(6−λ )+4i 2 = λ 2−9λ +14.
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Its roots are λ1 = 2 and λ2 = 7. For the eigenvalue λ1 = 2, we find the normalized eigenvector

v1 =
1√
5

[
2i

1

]
.

For the eigenvalue λ2 = 7, we find the normalized eigenvector

v2 =
1√
5

[
1

2i

]
.

Note that these eigenvectors are orthogonal to each other, confirming Proposition 11.107. We therefore

have D = P−1AP, where

D =

[
2 0

0 7

]
and P =

1√
5

[
2i 1

1 2i

]
.

Note that P is unitary and D is real diagonal. ♠

Exercises

Exercise 11.11.1 Which of the following linear transformations T : C2→ C2 is unitary?

(a) T

([
x

y

])
=

[
x

iy

]
.

(b) T

([
x

y

])
=

[
iy

−ix

]
.

(c) T




 x

y




=


 x+ iy

ix+ y


.

(d) T

([
x

y

])
=




1√
2
x+ i√

2
y

1√
2
x− i√

2
y


.

Exercise 11.11.2 Determine which of the following matrices are unitary.

A =

[
0 i

i 0

]
, B =

1

5

[
4 3i

3 4i

]
, C =

1√
5

[
1 2i

2i 1

]
.

Exercise 11.11.3 Determine which of the following matrices are unitary.

A =
1

2




1 i 0

0 1 i

i 0 1


 , B =

1

3




1 2 2i

−2i 2i 1

2i i 2


 , C =

1

2




1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


 .
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Exercise 11.11.4 Assume A and B are unitary 3×3-matrices. Then which of the following matrices are

unitary?

(a) AB (b) A+B (c) iA (d) −A (e) 2A ( f ) B−1 (g) AT (h) A∗ (i) A2 ( j) ABA−1

Exercise 11.11.5 Assume A and B are 3×3-matrices, and assume A is unitary and B is invertible. Then

which of the following matrices are unitary?

(a) AB (b) A+B ( f ) BAB−1 (g) ABA−1 (h) BB∗ (i) BB−1

Exercise 11.11.6 Which of the following matrices are hermitian? Which ones are symmetric?

A =

[
0 1

1 0

]
, B =

[
i 2

2 −i

]
, C =

[
0 i

−i 0

]
, D =

[
1 1+ i

1− i 2

]
.

Exercise 11.11.7 Which of the following matrices are hermitian? Which ones are symmetric?

A =




0 −2 1+ i

−2 3 i

1− i i 2


 , B =




3 i −1+2i

−i 0 −1+ i

−1−2i −1− i 2


 , C =




i i i

i i i

i i i


 .

Exercise 11.11.8 Assume A and B are hermitian 3× 3-matrices, and A is invertible. Then which of the

following matrices are hermitian?

(a) AB (b) A+B (c) iA (d) −A (e) 2A ( f ) A∗BA (g) A−1BA (h) BB∗ (i) A2

Exercise 11.11.9 Unitarily diagonalize the hermitian matrix A =

[
2 1+ i

1− i 3

]
.

Exercise 11.11.10 Unitarily diagonalize the hermitian matrix A =

[
0 −1+2i

−1−2i 4

]
.

Exercise 11.11.11 Unitarily diagonalize the hermitian matrix A =




2 1+ i 1− i

1− i 3 −2i

1+ i 2i 3


.
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11.12 Application: Principal component analysis

Outcomes

A. Compute the principal components of a matrix A.

B. Compute the centroid of a collection of data points.

C. Find the k-dimensional subspace that best approximates a given collection of data points.

D. Find the k-dimensional affine subspace that best approximates a given collection of data

points.

E. Compute the total squared distance of the data points to the best fit subspace (or best fit affine

subspace).

In this section, we will explore an application of the diagonalization of symmetric matrices called princi-

pal component analysis. Imagine we are given a collection of data points such as the following:

(11.6)

Although these points are spread out in two dimensions, they seem to be located pretty close to a 1-

dimensional subspace. Probably the best way to interpret this particular data set is to think of the points

as being “essentially” on a line, up to some small random errors.

More generally, suppose we are given a collection of data points in n-dimensional space, and we

are looking for a k-dimensional subspace that all data points are close to. This is an important way to

make sense of high-dimensional data. For example, it would be very difficult to visualize data in a 100-

dimensional space. However, it we knew that the data points lie very close to a 2-dimensional subspace,

then we could project all of the points to the subspace to obtain a 2-dimensional image of the data.

To state the problem more precisely, let us introduce the following notation. If W is a subspace of Rn

and v ∈ Rn is a vector, let us write d(v,W ) for the shortest distance from v to W (i.e., the distance from v
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to W along a line that is perpendicular to W ). Moreover, if W is a subspace of Rn and v1, . . . ,vm ∈ Rn are

the position vectors of m points, we define the total squared distance of the points to the subspace to be

the quantity

D = d(v1,W )2 + . . .+d(vm,W )2.

Then the problem we would like to solve can be stated as follows:

Problem 11.110: Subspace fitting problem

Given vectors v1, . . . ,vm ∈ Rn and given an integer k ≤ n, find the k-dimensional subspace W ⊆ Rn

that minimizes the total squared distance, i.e., such that D is as small as possible.

The following proposition gives us a method for solving the subspace fitting problem. It turns out that

the key ingredient in solving this problem is the diagonalization of symmetric matrices. The method was

discovered by Gale Young in 1937.

Proposition 11.111: Solution of the subspace fitting problem

Given vectors v1, . . . ,vm ∈ Rn and k ≤ n, the optimal solution to the subspace fitting problem can

be computed as follows:

1. Let A be the m×n-matrix whose rows are vT
1 , . . . ,vT

m. (Or equivalently, AT is the n×m-matrix

whose columns are v1, . . . ,vm.)

2. Let B = AT A. Then B is a positive semidefinite n×n-matrix.

3. By Proposition 11.69, all eigenvalues of B are real and non-negative. Let λ1, . . . ,λn be the

eigenvalues of B, listed according to their multiplicity and in decreasing order, i.e., so that

λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0. Let u1, . . . ,un be the corresponding eigenvectors.

4. Then W = span{u1, . . . ,uk} is the solution to the subspace fitting problem. Moreover, the

total squared distance of the points to this subspace is

D = λk+1 + . . .+λn.

Example 11.112: Subspace fitting in R2

Consider the following collection of points in R2:

{[
2

−3

]
,

[
−1

0

]
,

[
2

3

]
,

[
−6

−7

]
,

[
6

11

]
,

[
0

−1

]
,

[
1

6

]
,

[
−2

−3

]
,

[
−7

−6

]}
.

Find the 1-dimensional subspace that best approximates this collection of points. What is the total

squared distance of the points to the subspace?

Solution. We follow the steps outlined in Proposition 11.111.
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1. We have

AT =

[
2 −1 2 −6 6 0 1 −2 −7

−3 0 3 −7 11 −1 6 −3 −6

]
.

2. We calculate

B = AT A =

[
135 162

162 270

]
.

3. The eigenvalues of B are λ1 = 378 and λ2 = 27, with corresponding eigenvectors

u1 =

[
2

3

]
and u2 =

[
3

−2

]
.

4. The desired subspace W is spanned by the eigenvector corresponding to the largest eigenvalue, i.e.,

W = span{u1}. The total squared distance is λ2 = 27.

The space W is shown in the following illustration, along with the original points:

10

10

Of course, the example was rigged to ensure that the eigenvalues are integers. In real life, the entries of A

and B, as well as the eigenvalues and components of the eigenvectors are usually arbitrary real numbers.

♠

Example 11.113: Subspace fitting in R3

Consider the following collection of points in R3:







−7

4

5


 ,




0

3

3


 ,




2

−5

−4


 ,




10

−4

1


 ,



−2

5

4


 ,



−8

−1

−5


 ,




5

4

2


 ,



−6

9

6


 ,




9

−6

3


 ,



−2

−7

−8





 .

(a) Find the 1-dimensional subspace that best approximates this collection of points.

(b) Find the 2-dimensional subspace that best approximates this collection of points.

(c) What is the 3-dimensional subspace that best approximates this collection of points?

In each case, what is the total squared distance of the points to the subspace?

Solution. Again, we follow the steps from Proposition 11.111. We can do the calculations for parts (a),

(b), and (c) at the same time.
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1. We have

AT =



−7 0 2 10 −2 −8 5 −6 9 −2

4 3 −5 −4 5 −1 4 9 −6 −7

5 3 −4 1 4 −5 2 6 3 −8


 .

2. We calculate

B = AT A =




367 −154 16

−154 274 170

16 170 205


 .

3. The eigenvalues of B are λ1 = 513, λ2 = 306, and λ3 = 27, with corresponding eigenvectors

u1 =



−2

2

1


 , u2 =




2

1

2


 and u3 =



−1

−2

2


 .

For part (a), the desired 1-dimensional subspace is spanned by the eigenvector corresponding to the

largest eigenvalue, i.e., it is span{u1}. The total squared distance is λ2 +λ3 = 306+27 = 333.

For part (b), the desired 2-dimensional subspace is spanned by the eigenvectors corresponding to the

two largest eigenvalues, i.e., it is span{u1,u2}. The total squared distance is λ3 = 27.

Finally, in part (c), the desired 3-dimensional subspace is spanned by all three eigenvectors; it is of

course R3 itself, since it is the only 3-dimensional subspace. The total squared distance is 0, since all

points lie in the subspace. ♠

The vectors u1, . . . ,un that appear in the solution of the subspace fitting problem are called the principal

components of the matrix A.

Definition 11.114: Principal components

Let A be an m×n-matrix. The principal components of A are the (normalized, orthogonal) eigen-

vectors u1, . . . ,un of the positive semidefinite n×n-matrix AT A. They are usually listed in order of

decreasing eigenvalues.

The first principal component u1 gives the direction in which the rows of A show the most variability.

The second principal component u2 gives the direction in which the rows of A show the most remaining

variability that is orthogonal to u1. The third principal component u3 gives the direction of most variability

that is orthogonal to u1 and u2, and so on.
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Subspace fitting vs. curve fitting

In the particular case where n = 2 and k = 1, we are looking for a 1-dimensional subspace, i.e., a line

through the origin, which best fits the given 2-dimensional data, as in the illustration (11.6) above or as in

Example 11.112. On its face, the subspace fitting problem in this case seems similar to the linear curve

fitting problem we solved in Section 11.5. However, there is a subtle but important difference: in linear

curve fitting, we were seeking to minimize the distances of the points from the line in the y-direction,

whereas in subspace fitting, we are seeking to minimize the distances of the points from the subspace in

the direction perpendicular to the subspace. The following pair of pictures illustrates the difference:

Linear curve fitting

minimize

vertical

distances

Subspace fitting

minimize

distances

perpendicular

to subspace

Affine fitting

So far, we have been looking to approximate a given collection of points by a subspace, which necessarily

passes through the origin. But sometimes the points may not be near the origin, as in this example:

In this case, approximating the points by a subspace passing through the origin does not make much sense.

Instead, we should be looking for an affine subspace. An affine subspace is similar to a subspace, except

it does not necessarily contain the origin.
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Definition 11.115: Affine subspace

Let V be a vector space. A subset A ⊆ V is called an affine subspace of V if A is either empty, or

else of the form

A = v+W = {v+w | w ∈W} ,

where v ∈V and W is a subspace of V .

For example, in Chapter 3, we considered lines and planes in Rn that pass through a given point (not

necessarily the origin). These are examples of affine subspaces of Rn. The affine subspace fitting problem

is analogous to the subspace fitting problem:

Problem 11.116: Affine subspace fitting problem

Given the position vectors v1, . . . ,vm of m points in Rn, and given an integer k ≤ n, find the k-

dimensional affine subspace A ⊆ Rn that minimizes the total squared distance from the points to

A.

It turns out that the optimal solution to the affine subspace fitting problem can be computed by first com-

puting the centroid of the points, shifting the whole problem so that the centroid is at the origin, and then

solving an ordinary subspace fitting problem.

Definition 11.117: Centroid

Given m vectors v1, . . . ,vm, their centroid is the vector

v =
1

m
(v1 + . . .+vm).

It is also sometimes called the average or the center of mass of the vectors.

Proposition 11.118: Solution of the affine subspace fitting problem

Given vectors v1, . . . ,vm ∈ Rn and k≤ n, the optimal solution to the affine subspace fitting problem

can be computed as follows:

1. Compute the centroid v = 1
m
(v1 + . . .+vm) of the vectors.

2. Let wi = vi−v, for all i = 1, . . . ,n.

3. Compute the solution W to the (ordinary) subspace fitting problem for w1, . . . ,wm, as in

Proposition 11.111.

Then the best solution to the affine subspace problem is v+W .
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Example 11.119: Affine subspace fitting problem

Consider the following collection of points in R2:

{[
10

−6

]
,

[
2

10

]
,

[
5

−1

]
,

[
8

3

]
,

[
2

5

]
,

[
3

3

]
,

[
4

11

]
,

[
10

−1

]
,

[
1

12

]}
.

Find the 1-dimensional affine subspace that best approximates this collection of points. What is the

total squared distance of the points to the subspace?

Solution. We start by computing the centroid:

v =
1

9
(v1 + . . .+v9) =

1

9

[
45

36

]
=

[
5

4

]
.

Next, we shift all vectors by −v to get a new collection of vectors w1, . . . ,w9 centered at the origin. For

example,

w1 = v1−v =

[
10

−6

]
−
[

5

4

]
=

[
5

−10

]
,

w2 = v2−v =

[
2

10

]
−
[

5

4

]
=

[
−3

6

]
,

and so on. We get

{w1, . . . ,w9}=
{[

5

−10

]
,

[
−3

6

]
,

[
0

−5

]
,

[
3

−1

]
,

[
−3

1

]
,

[
−2

−1

]
,

[
−1

7

]
,

[
5

−5

]
,

[
−4

8

]}
.

Next we, we proceed as in Proposition 11.111 to find the best subspace fitting w1, . . . ,w9. We have

AT =

[
5 −3 0 3 −3 −2 −1 5 −4

−10 6 −5 −1 1 −1 7 −5 8

]

and

B = AT A =

[
98 −136

−136 302

]
.

The eigenvalues of B are λ1 = 370 and λ2 = 30, with corresponding eigenvectors

u1 =

[
1

−2

]
and u2 =

[
2

1

]

Thus, the best-fitting 1-dimensional subspace for w1, . . . ,w9 is W = span{u1}, and the best-fitting 1-

dimensional affine subspace for v1, . . . ,v9 is

v+W = {v+w |w ∈W}=
{[

5

4

]
+ t

[
1

−2

] ∣∣∣∣ t ∈ R

}
.
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Note that this is the equation of a line passing through the centroid v, and with direction vector u1. The

points v1, . . . ,v9, their centroid, and the affine subspace v+W are shown in the following illustration:

10

10

centroid

♠

Application to U.S. Senate voting data

The United States Senate votes on a lot of things: motions, resolutions, amendments, and bills, among

other things. Many of these votes are roll call votes, which means that the vote of every individual

senator is recorded (as opposed to a voice vote, where only the outcome is recorded). Roll call data

for the last 3 decades is publicly available and can be downloaded from the U.S. Senate website at

https://www.senate.gov/legislative/votes.htm.

We will now explore how to use linear algebra, and in particular principal component analysis, to

gain some useful information from the voting records.2 I have made a spreadsheet containing the votes

of 99 senators for the first 200 roll call votes of 2007. Each row in the spreadsheet corresponds to a

senator, listed in alphabetical order from Daniel Akaka of Hawaii to Ron Wyden of Oregon. I omitted

one senator who died during 2007. Each column of the spreadsheet corresponds to a vote. For exam-

ple, the first roll call vote of 2007 was on a resolution to honour President Gerald Ford (it passed 88

to 0). Each cell of the spreadsheet contains the number 1 if the senator voted “yes”, the number −1

if the senator voted “no”, and the number 0 if the senator did not vote. The spreadsheet is available

from https://www.mathstat.dal.
a/~selinger/linear-algebra/ under “Supplementary materi-

als”. Here are the first few rows and columns of the spreadsheet.

Akaka, Daniel (D) HI 1 1 1 1 1 −1 1 . . .
Alexander, Lamar (R) TN 0 1 −1 1 −1 −1 1 . . .
Allard, A. (R) CO 1 1 −1 −1 −1 1 1 . . .
Baucus, Max (D) MT 1 1 1 1 1 −1 1 . . .
Bayh, Evan (D) IN 1 1 1 −1 1 −1 1 . . .
Bennett, Robert (R) UT 1 1 −1 1 1 −1 1 . . .

...
...

...
...

...
...

...
...

. . .

The human mind is not very well equipped to deal with such massive amounts of data. Rather than

listing 122 motions that Senator X supported and 78 motions that she opposed, we like to come up with

2This example was inspired by Examples 11.2.13 and 11.3.15 of “Coding the Matrix: Linear Algebra through Computer

Science Applications” by Philip N. Klein.

https://www.senate.gov/legislative/votes.htm
https://www.mathstat.dal.ca/~selinger/linear-algebra/
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abstractions, such as Senator X is “conservative”, “pro choice”, “pro business”, “hawkish”, etc. However,

the problem with abstractions is that they do not necessarily mean anything in the real world. In the real

world, a senator’s record is just a sequence of votes.

We will represent each senator by a vector in R200, which corresponds to a row of the above table. For

example, to Senator Akaka, we associate the vector




1

1

1

1

1

−1

1
...




∈ R200.

Thus, we can represent each senator (or more precisely, each senator’s voting record) as a point in 200-

dimensional space. In this way, the voting data can be interpreted as 99 points in R200.

Unfortunately, 200 dimensions are impossible to visualize. But what if the voting records of all the

senators lie on (or at least close to) a much-smaller-dimensional affine subspace? This is actually not an

unreasonable expectation; after all, there are probably only a handful of issues most senators care about.

For example, if a certain senator supports gun control, he will be likely to vote a certain way on measures

that affect gun control. If another senator supports the gun lobby, she is likely to vote the opposite way.

We can thus consider this as an instance of the affine subspace problem: we are looking for a low-

dimensional affine subspace that is close to all 99 points. Following the method of Proposition 11.118,

we first find the centroid of the points, and then we compute a certain 99× 200-matrix A and a positive

semidefinite 200×200-matrix B = AT A. Using software, we can find the eigenvalues and -vectors of B.

The first few eigenvalues (in decreasing order) are:

λ1 = 7255.65, λ2 = 519.16, λ3 = 430.60, λ4 = 278.05, and λ5 = 230.56.

All of the remaining eigenvalues are less than 200, and the sum of the remaining eigenvalues is λ6+ . . .+
λ200 = 3913.46. This means that the vast majority of the voting behavior of each senator is determined

by a single dimension, given by the eigenvector corresponding to the eigenvalue λ1. In other words, there

is a 1-dimensional affine subspace that all 99 points are pretty close to. If we project each senator to this
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affine subspace, we get the following picture:
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2007 U.S. Senate voting data, projection to the first principal component:

For convenience, Republican senators have been shown in red and Democratic and independent senators

in blue. Not all senators have been named, because in some areas they are clustered very densely. An inter-

pretation of the principal component then immediately suggests itself: it appears to be the “conservative”

vs. “liberal” axis. We can use this picture to assist in answering questions such as: “Which party votes

more uniformly?”, “Which state are the most liberal Republicans from?”, “Which states are the most

conservative Democrats from?”, “Was Obama really a radical?”, and “Was McCain really a maverick?”.

If we repeat the same calculation for the 2017 senate, we get the following picture:
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2017 U.S. Senate voting data, projection to the first principal component:

We can use this to help answer questions such as “Has the senate become more partisan between 2007

and 2017?”.

If we instead project the data onto the first two principal components, we get the following picture for
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the 2007 data:
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2007 U.S. Senate voting data, projection to the first two principal components:

The picture clearly shows senators clustering in certain areas. We can use this to help answer certain ques-

tions, for example, “How different was Sanders’s voting record from Clinton’s?”. However, although the

2-dimensional picture seems to reveal more detail, its interpretation is less clear. While it seems obvious

that the horizontal axis corresponds to a conservative vs. liberal world view, it is much less obvious what

the political meaning of the vertical axis is. Maybe it is related to some issue that does not typically follow

party lines, such as North vs. South, rich states vs. poor states, pro-immigration vs. anti-immigration, and

so on. To find a convincing interpretation of the vertical axis, further investigation of the data would be

required (such as, looking at the actual content of the votes in question).

Finally, a word of caution. Whenever we use mathematics to try to draw real-world conclusions

from data, these conclusions should be taken with an extra-large grain of salt. People have an outsized

tendency to trust mathematics and to take its results as infallible. We therefore have a special responsibility

not to overstate any conclusions, and to point out potential pitfalls with the analysis. No matter how

wonderful principal complement analysis is, we must keep in mind that what we are still only looking

at a 2-dimensional projection of a 200-dimensional space. Therefore it is inevitable that lots of details

and nuances are lost. We could get a completely different picture by looking at a different 2-dimensional

projection.

To see how the data can sometimes be misleading, consider the question “How similar is Senator

Tim Johnson, Democrat of South Dakota, to Senators Olympia Snowe and Susan Collins of Maine?”.

In the 1-dimensional picture, it looked as if they were very similar. We could easily rationalize this by

pointing out that Johnson is the most conservative Democrat, and Snowe and Collins are the most liberal
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Republicans. However, the 2-dimensional picture reveals an interesting nuance, which is that the voting

records of Johnson is not all that similar to that of Snowe and Collins. It is entirely possible that if we add

a third or fourth dimension to the picture, many more additional such details will emerge. In summary,

while principal component analysis is a useful tool, it is just one tool among many, and we always need to

exercise our best judgement in drawing conclusions from data.

Exercises

Exercise 11.12.1 Consider the following collection of points in R2:

{[
1

−1

]
,

[
−2

1

]
,

[
3

−2

]
,

[
2

−2

]
,

[
−2

1

]
,

[
3

−1

]
,

[
−3

0

]
,

[
0

3

]
,

[
0

0

]
,

[
0

−2

]}
.

Find the 1-dimensional subspace that best approximates this collection of points. What is the total squared

distance of the points to the subspace? Sketch the subspace and the points.

Exercise 11.12.2 Consider the following collection of points in R3:








0

0

9


 ,




1

0

−3


 ,




0

0

1






0

5

−4


 ,




6

−2

13


 ,




1

0

0


 ,




0

2

0


 ,




0

1

1


 ,




2

0

0


 ,




4

0

0


 ,




1

−3

0


 ,




0

0

4





 .

(a) Find the 1-dimensional subspace that best approximates this collection of points.

(b) Find the 2-dimensional subspace that best approximates this collection of points.

(c) What is the 3-dimensional subspace that best approximates this collection of points?

In each case, what is the total squared distance of the points to the subspace?

Exercise 11.12.3 Find the principal components of the matrix

A =




0 0 0 0 −1 0 3 0 1

0 1 0 0 2 3 0 2 −1

1 −1 −3 3 −1 0 0 −2 2


 .

Exercise 11.12.4 Compute the centroid of the following collection of points:

{[
2

−1

]
,

[
0

1

]
,

[
4

−3

]
,

[
−4

−4

]
,

[
0

−2

]
,

[
−2

−1

]
,

[
0

−2

]
,

[
−2

−4

]
,

[
3

−1

]
,

[
−5

−5

]}
.

Exercise 11.12.5 Consider the following collection of points in R2:

{[
4

−3

]
,

[
10

−9

]
,

[
4

−7

]
,

[
−2

3

]
,

[
10

−3

]
,

[
4

−3

]
,

[
5

−3

]
,

[
4

1

]
,

[
−2

−3

]
,

[
3

−3

]}
.
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Compute the centroid, and then find the 1-dimensional affine subspace that best approximates this collec-

tion of points. What is the total squared distance of the points to the subspace?

Exercise 11.12.6 Consider the following collection of points in R3:








0

−2

2


,




6

2

2


,




2

2

6


,




3

2

2


,




3

0

5


,




5

0

2


,




4

−2

−2


,




5

0

2


,




1

0

2


,




3

0

−1


,




3

0

1


,




3

0

3


,




1

0

2


,




3

−2

2








.

Find the 1- and 2-dimensional affine subspaces that best approximate this collection of points. What is the

total squared distance of the points to each subspace?



A. Complex numbers

Throughout history, mankind has invented more and more complicated number systems in an effort to

make algebra easier.

• In the beginning, there were the natural numbers N = {1,2,3, . . .}. However, after a while, it

became a problem that certain equations, such as x+ 5 = 3, do not have a solution in the natural

numbers.

• To solve this problem, zero and negative numbers were invented, resulting in the set of integers

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}. In the integers, the equation x+ 5 = 3 has a solution, namely

x =−2. But some other equations, such as 2x = 1, still do not have a solution in the integers.

• To solve this problem, the rational numbers Q were invented. In the rational numbers, the equation

2x = 1 has a solution, namely x = 1
2 . However, some other equations, such as x2 = 2, still do not

have a solution in the rational numbers.

• To solve this problem, the real numbers R were invented. In the real numbers, the equation x2 = 2

has a solution, namely x =
√

2. However, some other equations, such as x2 = −1, still don’t have a

solution in the real numbers.

• To solve this problem, the complex numbers were invented.

The purpose of this section is to summarize the most important facts about the complex numbers. We

will also see that the above process does not continue. In the complex numbers, all non-trivial polynomial

equations have a solution, and therefore, no additional numbers are “missing”. This property is called the

fundamental theorem of algebra. Gauss is usually credited with giving a proof of this theorem in 1797

but many others worked on it and the first completely correct proof was due to Argand in 1806.

A.1 The complex numbers

Outcomes

A. Add, subtract, multiply, and divide complex numbers.

B. Find the conjugate and the magnitude of a complex number.

C. Apply algebraic properties of the complex numbers to simplify equations.
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Definition A.1: The complex numbers

Let i be an imaginary number such that i 2 =−1. A complex number is a number of the form

z = a+bi,

where a and b are real numbers. The set of all complex numbers is denoted C.

The form z = a+bi is called the standard form or Cartesian form of the complex number z. We refer to

a as the real part and to b as the imaginary part of z.

Addition, subtraction, and multiplication of complex numbers are defined in the obvious way, keep-

ing in mind that i 2 =−1. Namely, we have

(a+bi)+(c+di) = (a+ c)+(b+d)i,

(a+bi)− (c+di) = (a− c)+(b−d)i,

(a+bi)(c+di) = ac+adi+bci+bdi 2 = (ac−bd)+(ad+bc)i.

Example A.2: Addition, subtraction, and multiplication of complex numbers

• (3+5i)+(2−3i) = (3+2)+(5−3)i = 5+2i.

• (3+5i)− (2−3i) = (3−2)+(5+3)i = 1+8i.

• (3+5i)(2−3i) = 6−9i+10i−15i 2 = 21+ i.

Division of complex numbers is more complicated. We first note that it is easy to divide a complex number

by a real number. Namely,
a+bi

r
=

a

r
+

b

r
i.

But how can we divide by a complex number? We use the following trick. Let z = a+ bi be a complex

number, and consider the product (a+bi)(a−bi). It is equal to

(a+bi)(a−bi) = a2−b2i 2 = a2 +b2.

Therefore, (a+ bi)(a− bi) is always a real number, and therefore easy to divide by. Therefore, we can

compute the multiplicative inverse of a complex number z = a+bi as follows:

z−1 =
1

z
=

1

a+bi
=

1

a+bi

a−bi

a−bi
=

a−bi

a2 +b2
.

Example A.3: Inverse of a complex number

1

2+5i
=

2−5i

22 +52
=

2

29
− 5

29
i.
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You should verify that this is indeed the inverse, by multiplying 2+5i by 2
29 − 5

29 i and checking that the

answer is indeed 1.

Division of complex numbers can then be defined in terms of the multiplicative inverse, i.e., z
w
= zw−1.

Example A.4: Division of complex numbers

5+7i

3−4i
=

(5+7i)(3+4i)

(3−4i)(3+4i)
=
−13+41i

32 +42
=−13

25
+

41

25
i.

As a special case of division, note that

i−1 =
1

i
=

1(−i)

i(−i)
=−i.

The complex numbers form a field, i.e., they satisfy the nine field axioms. See Section 1.8 for the

definition of a field.

Proposition A.5: The complex numbers form a field

The complex numbers, with the operations of addition, subtraction, multiplication, and division,

form a field. Specifically, this means that they satisfy the following properties:

(A1) Commutative law of addition: z+w = w+ z;

(A2) Associative law of addition: (z+w)+u = z+(w+u);

(A3) Unit law of addition: 0+ z = z;

(A4) Additive inverse: z+(−z) = 0;

(M1) Commutative law of multiplication: zw = wz;

(M2) Associative law of multiplication: (zw)u = z(wu);

(M3) Unit law of multiplication: 1z = z;

(M4) Multiplicative inverse: when z is non-zero: zz−1 = 1;

(D) Distributive law: z(w+u) = zw+ zu.

Another useful operation on complex numbers is the complex conjugate. Let z = a+ bi be a complex

number. Then the conjugate of z, written z, is given by

z = a−bi.

Note that if z = a+bi is a complex number, then zz = (a+bi)(a−bi) = a2 +b2. Therefore, zz is always

a real number and zz≥ 0. We define the magnitude of z to be

|z|=
√

zz =
√

a2 +b2.
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The magnitude is also sometimes called the absolute value or the modulus of the complex number.

Example A.6: Conjugate and magnitude of a complex number

• 3+5i = 3−5i.

• i =−i.

• 7 = 7.

• |3+5i|=
√

32 +52 =
√

34.

• |i|= 1.

• |−6|= 6.

Note that for a real number a, we have a = a. Also, when a is real, the magnitude |a| =
√

a2 is just the

usual absolute value of real numbers. The following two propositions list some basic properties of the

conjugate and of the magnitude.

Proposition A.7: Properties of the conjugate

Let z and w be complex numbers. Then, the following properties of the conjugate hold.

• z±w = z±w.

• (zw) = z w.

• z−1 = z−1.

• z/w = z/w.

• z = z.

• z is real if and only if z = z.

Proposition A.8: Properties of the magnitude

Let z,w be complex numbers. The following properties hold.

• |z| ≥ 0, and |z|= 0 if and only if z = 0.

• |zw|= |z| |w|.

• |z|= |z|.

• |z/w|= |z|/ |w|.

• Triangle inequality: |z+w| ≤ |z|+ |w|.
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Exercises

Exercise A.1.1 Let z = 2+7i and let w = 3−8i. Compute z+w, z−2w, zw, and w
z

.

Exercise A.1.2 Let z = 1−4i. Compute z, z−1, and |z|.

Exercise A.1.3 Let z = 3+5i and w = 2− i. Compute zw, |zw|, and z−1w.

Exercise A.1.4 Use the properties of complex numbers to prove that if z is a complex number, then there

exists a complex number w with |w|= 1 and wz = |z|.

Exercise A.1.5 I claim that 1 =−1. Here is why.

−1 = i 2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1.

What is wrong with this argument?

A.2 Geometric interpretation

Outcomes

A. View complex numbers as points in the plane.

B. Understand the geometric meaning of addition, subtraction, multiplication, and the complex

conjugate.

C. Understand the geometric meaning of the magnitude and argument of a complex number.

Just as a real number can be considered as a point on the line, a complex number z = a+ bi can be

considered as a point (a,b) in the plane whose x coordinate is a and whose y coordinate is b. For example,

in the following picture, the complex number z = 3+2i can be represented as the point in the plane with

coordinates (3,2).

θ

i

2i

−1 0 1 2 3

r

z = 3+2i
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The magnitude r = |z| of a complex number is its distance from the origin. We also define the argument

of z to be the angle θ between the x-axis and the line from the origin to z, counted positively in the

counterclockwise direction. The magnitude r and argument θ are shown in the above picture.

Addition of complex numbers is like vector addition. The effect of multiplying two complex numbers

is to multiply their magnitudes and add their arguments. For example, the following picture illustrates the

multiplication (3+2i)(1+ i) = 1+5i.

i

2i

−1 0 1 2 3

3+2i

The number 3+2i

i

2i

−1 0 1 2 3

1+ i

The number 1+ i

i

2i

3i

4i

5i

−1 0 1 2 3

1+5i

The product (3+2i)(1+ i) = 1+5i

To take the multiplicative inverse of a complex number, we take the reciprocal of the magnitude and negate

the argument.

θ
−θ

i

1

r

z

1
r z−1

The effect of taking the complex conjugate is to reflect the given complex number about the x axis (or

equivalently, keep the magnitude unchanged and negate the argument).

θ
−θ

i

1

r

z

r

z̄
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Exercises

Exercise A.2.1 Draw the complex numbers z = 2+ i and w = −2+ 3i as points in the plane. Then use

the geometric interpretation to find z+w, z−w, zw, z−1, z, and |z|.

Exercise A.2.2 Use the geometric interpretation to find a complex number z such that z2 = i. Can you

find two such numbers?

Exercise A.2.3 Use the geometric interpretation to find 3 different complex numbers z such that z3 =−1.

Hint: these numbers will lie on the unit circle.

A.3 The fundamental theorem of algebra

Outcomes

A. Find the complex roots of a quadratic polynomial.

B. In special cases, find the complex roots of a polynomial of degree 3 or more.

C. Factor a polynomial into linear factors.

The complex numbers were invented so that equations such as z2+1= 0 would have solutions. In fact, this

equation has two complex solutions, namely z = i and z = −i. However, something much more general

(and surprising) is true: every non-trivial polynomial equation has a solution in the complex numbers. To

understand this statement, recall that a polynomial is an expression of the form

p(z) = anzn +an−1zn−1 + . . .+a1z+a0.

The constants a0, . . . ,an are called the coefficients of the polynomial. If an is the largest non-zero coeffi-

cient, we say that the polynomial has degree n. A polynomial of degree 0 is of the form p(z) = a0, and is

also called a constant polynomial. Recall that a root of a polynomial is a number z such that p(z) = 0.

The fundamental theorem of algebra is the following:

Theorem A.9: Fundamental theorem of algebra

Every non-constant polynomial p(z) with real or complex coefficients has a complex root.

The proof of this theorem is beyond the scope of this book. Note that the theorem does not say that the

roots are always easy to find. To find the roots of a polynomial of degree 2, we can use the quadratic

formula. However, if the degree is greater than 2, we may sometimes have to use fancier methods, such
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as Newton’s method from calculus, or even a computer algebra system, to locate the roots. We give some

examples.

Example A.10: Roots of a quadratic polynomial

Find the roots of the polynomial p(z) = z2−2z+2.

Solution. The quadratic formula gives

z =
2±
√
−4

2
.

Of course, in the real numbers, the square root of −4 does not exist, so p(z) has no roots in the real

numbers. However, in the complex numbers, the square root of −4 exists and is equal to ±2i. Thus, the

roots of p(z) are:

z =
2±2i

2
= 1± i.

Indeed, we can double-check that 1+ i and 1− i are in fact roots:

p(1+ i) = (1+ i)2−2(1+ i)+2 = (1+2i+(−1))−2−2i+2 = 0,

p(1− i) = (1− i)2−2(1− i)+2 = (1−2i+(−1))−2+2i+2 = 0.

♠
Example A.11: Roots of a cubic polynomial

Find the roots of the polynomial p(z) = z3−4z2 +9z−10.

Solution. By the intermediate value theorem of calculus, we know that a cubic polynomial with real

coefficients always has at least one real root. This is because p(z) goes to −∞ when z→−∞ and to ∞
when z→∞. By trial and error, we find that z = 2 is a root of this polynomial. We can therefore factor out

(z−2) from this polynomial:

p(z) = z3−4z2 +9z−10 = (z−2)(z2−2z+5).

Now we can use the quadratic formula to find the roots of z2−2z+5. We find

z =
2±
√
−16

2
=

2±4i

2
= 1±2i.

Thus, the three complex roots of p(z) are z = 2, z = 1+2i, and z = 1−2i. ♠

The following proposition is an important and useful consequence of the fundamental theorem of algebra:

Proposition A.12: Factoring a polynomial

Let p(z) be a polynomial of degree n with real or complex coefficients. Then p(z) can be factored

into n linear factors over the complex numbers, i.e., p(z) can be written in the form

p(z) = a(z−b1)(z−b2) · · ·(z−bn),

where b1, . . . ,bn are (not necessarily distinct) roots of p(z).
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Proof. If n = 0, then p(z) = a and there is nothing to show. Otherwise, by the fundamental theorem of

algebra, p(z) has at least one complex root, say b1. From calculus, we know that we can factor out (z−b1)
from p(z), i.e., we can find a polynomial q(z) of degree n−1 such that

p(z) = (z−b1)q(z),

We can repeatedly apply the same procedure to q(z) until p(z) has been factored into linear factors. ♠

Example A.13: Factoring a polynomial

Factor p(z) = z3−4z2 +9z−10 into linear factors.

Solution. From Example A.11, we know that p(z) has three distinct roots b1 = 2, b2 = 1+2i, and b3 =
1−2i. We can therefore write

p(z) = a(z−b1)(z−b2)(z−b3).

Since the leading term is z3, we find that a = 1. Therefore

p(z) = (z−2)(z−1−2i)(z−1+2i).

♠

Exercises

Exercise A.3.1 Find the roots of the polynomial p(z) = z2−6z+13.

Exercise A.3.2 Find the roots of p(z) = z3 +5z2 +4z−10. Hint: one of the roots is z = 1.

Exercise A.3.3 Factor z3−3z+2 into a product of linear factors.

Exercise A.3.4 Let p(x) = anxn + an−1xn−1 + . . .+ a1x+ a0 be a polynomial with real coefficients, i.e.,

such that all the ak are real numbers. Suppose that z is a root of p. Show that z is also a root of p.





B. Answers to selected exercises

1.1.1
x+3y = 1

4x− y = 3
, Solution is:

[
x = 10

13 ,y = 1
13

]
.

1.1.2
3x+ y = 3

x+2y = 1
, Solution is: [x = 1,y = 0]

1.1.4

1.2.1 All of them except (c) and (e).

1.2.2 (a) is a solution to equations 1 and 2, (b) is a solution to equations 2 and 3, (c) is a solution to

equations 1, 2, and 3, (d) is a solution to 1 and 3, and (e) is a solution to equations 1, 2, and 3. Only (c)

and (e) are solutions to the system of equations.

1.3.1 (x,y) = (1,0).

1.3.2
x+3y = 1

4x− y = 3
, Solution is: (x,y) =

(
10
13 , 1

13

)

1.3.3

x+2y = 1

2x− y = 1

4x+3y = 3

, Solution is: (x,y) =
(

3
5 , 1

5

)

1.3.4 No solution exists.

x + y − 3z = 2

2x + y + z = 1

3x + 2y − 2z = 0

, after elementary operations:

x + 4z = 0

y − 7z = 0

0 = 1

. Thus one of

the equations says 0 = 1 in an equivalent system of equations.

1.3.5 (x,y,z) = (4,1,1).

1.3.6

x + 2y − 3z = 5

−x − y + z = −2

x − 3y = −3.

As an augmented matrix:




1 2 −3 5

−1 −1 1 −2

1 −3 0 −3


 .
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1.3.7

4g− I = 150

4I−17g =−660

4g+ s = 290

g+ I + s−b = 0

, Solution is : {g = 60, I = 90,b = 200,s = 50}

1.4.1 The solution exists but is not unique.

1.4.2 A solution exists and is unique.

1.4.4 There might be a solution. If so, there are infinitely many.

1.4.5 No. Consider x+ y+ z = 2 and x+ y+ z = 1.

1.4.6 These can have a solution. For example, x+ y = 1, 2x+2y = 2, 3x+3y = 3 even has an infinite set

of solutions.

1.4.7 h = 4.

1.4.8 Any h will work.

1.4.9 Any h will work.

1.4.10 If h 6= 2 there will be a unique solution for any k. If h = 2 and k 6= 4, there are no solutions. If h = 2

and k = 4, then there are infinitely many solutions.

1.4.11 If h 6= 4, then there is exactly one solution. If h = 4 and k 6= 4, then there are no solutions. If h = 4

and k = 4, then there are infinitely many solutions.

1.4.12 There is no solution. The system is inconsistent. You can see this from the augmented matrix.


1 2 1 −1 2

1 −1 1 1 1

2 1 −1 0 1

4 2 1 0 5


, echelon form:




1 2 1 −1 2

0 −3 0 2 −1

0 0 −3 0 −2

0 0 0 0 1


.

1.4.13 The solution is: x = 1
3 − 1

3t, y = 2
3 +

2
3 t, z = 1

3 , w = t.

1.4.14 (a) Yes. (b) No. (c) Yes.

1.4.16 (b) The echelon form is




1 0 1
2

1
2

0 1 −1
4

3
4

0 0 0 0


. Therefore, the solution is of the form z = t, y =

3
4 + t

(
1
4

)
, x = 1

2 − 1
2 t, where t ∈ R.

(c) The echelon form is

[
1 0 4 2

0 1 −4 −1

]
and so the solution is z = t, y =−1+4t, x = 2−4t.
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(d) The echelon form is




1 0 0 0 9 3

0 1 0 0 −4 0

0 0 1 0 −7 −1

0 0 0 1 6 1


 and so x5 = t, x4 = 1−6t, x3 = −1+7t, x2 = 4t,

x1 = 3−9t.

(e) The echelon form is




1 0 2 0 −1
2

5
2

0 1 0 0 1
2

3
2

0 0 0 1 3
2 −1

2

0 0 0 0 0 0




. Therefore, let x5 = t, x3 = s. Then the other

variables are given by x4 =−1
2 − 3

2t, x2 =
3
2 − t 1

2 , x1 =
5
2 +

1
2 t−2s.

1.4.17 Solution is: [x = 1−2t,z = 1,y = t].

1.4.18 Solution is: [x = 2−4t,y =−8t,z = t].

1.4.19 Solution is: [x =−1,y = 2,z =−1].

1.4.20 Solution is: [x = 2,y = 4,z = 5].

1.4.21 Solution is: [x = 1,y = 2,z =−5].

1.4.22 No. Consider x+ y+ z = 2 and x+ y+ z = 1.

1.4.23 No. This would lead to 0 = 1.

1.4.24 Yes. It has a unique solution.

1.4.25 The last column must not be a pivot column. The remaining columns must each be pivot columns.

1.4.26 You need

1
4(20+30+w+ x)− y = 0

1
4(y+30+0+ z)−w = 0

1
4(20+ y+ z+10)− x = 0
1
4(x+w+0+10)− z = 0

. Solution is: [x = 15,y = 20,z = 10,w = 15].

1.4.28 The rank is the number of pivot entries in the echelon form. There is at most one pivot entry in each

row and column. Therefore, the rank cannot be larger than the number of rows or the number of columns;

in other words, the rank is at most min(m,n).

1.4.29 (a) The echelon form has 4 non-zero rows and 6 columns, so there are 2 free variables, and the

system has infinitely many solutions.

(b) Such a system of equations of equations does not exist. If you add in another column, the rank does

not get smaller.



498 Answers to selected exercises

(c) Such a system of equations does not exist, because the rank cannot equal 4 if there are only two

columns.

(d) The echelon form has 4 non-zero rows on the left-hand side, but 5 non-zero rows if we also include

the right-hand side. Therefore the system is inconsistent, i.e., it has no solutions.

(e) The echelon form has 2 non-zero rows, so there are 2 pivot variables and no free variables. There-

fore, the system has a unique solution.

1.4.30 These are not legitimate row operations. They do not preserve the solution set of the system.

1.5.1 (a) This one is not.

(b) This one is.

(c) This one is.

1.5.3 Solution is: [x =−1,y =−5,z = 4]

1.5.4 Solution is: [x = 2t +1,y = 4t,z = t]

1.5.5 Solution is: [x = 1,y = 5,z = 3]

1.5.6 Solution is: [x = 4,y =−4,z =−2]

1.5.7 The rank of the coefficient matrix is 3, so both systems have a unique solution. The solution of the

first system is (x,y,z) = (1,0,1), and the solution of the second system is (x,y,z) = (1,1,2).

1.6.2 The systems (b), (c), and (d) have non-trivial solutions, because the rank is less than the number of

variables.

1.6.3 The general solution is (x,y,z) = (1,2,4)+ s(1,0,1)+ t(0,1,−1), or equivalently, (x,y,z) = (1+
s,2+ t,4+ s− t), where s and t are parameters.

1.8.6 (a) Reduced echelon form:

[
1 0 1 1

0 1 i 1

]
. General solution: x = 1− t, y = 1− it, z = t.

(b) Solution: x = 1, y = 1+ i, z = i.

1.11.1 The other three equations are

4I1 + I1− I4 +2I1−2I2 = −10

6I3−6I4 + I3 + I3 +5I3−5I2 = −20

2I4 +3I4 +6I4−6I3 + I4− I1 = 0.
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Then the system is
2I2−2I1 +5I2−5I3 +3I2 = 5

4I1 + I1− I4 +2I1−2I2 =−10

6I3−6I4 + I3 + I3 +5I3−5I2 =−20

2I4 +3I4 +6I4−6I3 + I4− I1 = 0.

The solution is:

I1 = −750

373

I2 = −1421

1119

I3 = −3061

1119

I4 = −1718

1119
.

1.11.2 We have

2I1 +5I1 +3I1−5I2 = 10

I2− I3 +3I2 +7I2 +5I2−5I1 = −12

2I3 +4I3 +4I3 + I3− I2 = 0.

Simplifying this yields

10I1−5I2 = 10

−5I1 +16I2− I3 = −12

−I2 +11I3 = 0.

The solution is given by

I1 =
218

295
, I2 =−

154

295
, I3 =−

14

295
.

2.1.2

−→
PQ =

−→
0Q−−→0P =




5−2

−2−0

1− (−4)


=




3

−2

5




−→
QP =

−→
0P−−→0Q =




2−5

0− (−2)
(−4)−1


=



−3

2

−5




2.1.3 We need 5x−3y = 2x−2y and 4 = 2y. The unique solution is x = 2
3 and y = 2.

2.2.1




1

9

0


.
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2.2.2 (a) (u+v)+w = (v+u)+w = v+(u+w) = v+(w+u) = (v+w)+u. Here we have used the

commutative law, the associative law, the commutative law, and the associative law, in that order.

(b) (u+ 0)+ (v+(−u)) = u+(v+(−u)) = u+((−u)+ v) = (u+(−u))+ v = 0+ v = v+ 0 = v.

Here we have used the additive unit, the commutative law, the associative law, the additive inverse,

the commutative law, and the additive unit, in that order.

2.3.1

u

−u

v

−1
2v

2v

2.3.2




−55

13

−21

39


.

2.3.3 (a) (k+ ℓ)(u+ v) = (k+ ℓ)u+(k+ ℓ)v = ku+ kv+ ℓu+ ℓv. Here we used the distributive law

over vector addition in the first step, and the distributive law over scalar addition in the second step.

(b) We have 0u = (0+0)u = 0u+0u by properties of scalars and by the distributive law, respectively.

Adding −(0u) to both sides of the equation, and using the additive unit law and associativity, we

have 0 = 0u.

(c) We have (−1)u = (−1)u+ 0 = (−1)u+ (u + (−u)) = ((−1)u+ u) + (−u) = ((−1)u+ 1u) +
(−u) = ((−1)+1)u+(−u) = 0u+(−u) = 0+(−u) = −u. Here, we have used the additive unit

law, the additive inverse law, the associative law, the rule for multiplication by 1, the distributive

law, properties of scalars, the property of part (b), and the additive unit law, respectively.

2.4.2 


4

4

−3


= 2




3

1

−1


−




2

−2

1


 .

2.4.3 The system 


4

4

4


= a1




3

1

−1


+a2




8

0

−1


+a3




2

−2

1




has no solution.

2.5.1
√

17.

2.5.2
√

27.
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2.5.3 The form the plane x+ y+ z = 0.

2.5.4 They form a sphere of radius 1, given by the equation x2 + y2 + z2 = 1.

2.5.5 ‖u‖=
√

13, ‖v‖=
√

30, ‖w‖=
√

22.

2.5.7 This follows from the last property of Proposition 2.20: ‖−u‖= ‖(−1)u‖= |−1|‖u‖= ‖u‖.

2.5.8 Only w is a unit vector.

2.5.9

1

‖u‖u =
1√
5

[
1

2

]
,

1

‖v‖v =
1√
17



−2

3

2


 ,

1

‖w‖w =
1

6




5

−3

1

−1


 .

2.6.1




1

2

3

4


·



2

0

1

3


= 17.

2.6.4 cosθ =

[
3 −1 −1

]T·[ 1 4 2
]T

√
9+1+1

√
1+16+4

=
−3√

11
√

21
.

2.6.5 cosθ =
−10√

1+4+1
√

1+4+49
.

2.6.6 This formula says that u·v = ‖u‖‖v‖cosθ where θ is the included angle between the two vectors.

Thus

‖u·v‖= ‖u‖‖v‖‖cosθ‖ ≤ ‖u‖‖v‖
and equality holds if and only if θ = 0 or π . This means that the two vectors either point in the same

direction or opposite directions. Hence one is a multiple of the other.

2.6.7 This triangle has sides
−→
AB,
−→
BC,
−→
CA. The direction of the sides does not matter, since scalar multipli-

cation preserves orthogonality.

−→
PQ = (5,−2,1)− (2,0,3) = (3,−2,4),
−→
QR = (7,5,3)− (5,−2,1) = (2,7,2),
−→
RP = (2,0,−3)− (7,5,3) = (−5,−5,−6).

If any pair of these is orthogonal then we are done:

−→
AB ·−→BC = (3,−2,4) · (2,7,2) = 6−14+8 = 0.

The triangle has a right angle at B.
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2.6.8
v·w
v·v v =

−5

14




1

2

3


=



− 5

14

−5
7

−15
14


.

2.6.9
v·w
v·v v =

−5

10




1

0

3


=



−1

2

0

−3
2


.

2.6.10
v·w
v·v v =

[
1 2 3 0

]T·[ 1 2 −2 1
]T

1+4+9




1

2

3

0


=




− 1
14

− 2
14

− 3
14

0


.

2.6.13 No, it does not. The vector 0 has no direction. The formula for proj0(w) doesn’t make sense either.

2.6.14

a =



−3/2

3/2

−3


 , b =




9/2

1/2

−2


 .

2.6.15 (
u− v·u
‖v‖2

v

)

·
(

u− v·u
‖v‖2

v

)
= ‖u‖2−2(v·u)2 1

‖v‖2
+(v·u)2 1

‖v‖2
≥ 0,

and so

‖u‖2‖v‖2 ≥ (v·u)2.

We get equality exactly when u = projv(u) =
v·u
‖v‖2

v, or in other words, when u is a multiple of v.

2.6.16

w−projv(w)+u−projv(u) = w+u− (projv(w)+projv(u))

= w+u−projv(w+u).

This follows because

projv(w)+projv(u) =
v·w
‖v‖2

v+
v·u
‖v‖2

v

=
v·(w+u)

‖v‖2
v

= projv(w+u).

2.6.17 u·(v−proju(v))= u·v− u ·v
‖u‖2

u·u= u·v−u·v= 0. Therefore, we can write v= (v−proju(v))+

proju(v). The first is orthogonal to u and the second is a multiple of u so is parallel to u.
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2.7.1 (a) Left-handed. (b) Right-handed. (c) Right-handed. (d) Left-handed.

2.7.2 If a 6= 0, then the condition says that ‖a×u‖= ‖a‖sinθ = 0 for all angles θ . Hence a = 0.

2.7.3




1

2

3


×




3

−2

1


=




8

8

−8


. The area of the parallelogram is 8

√
3.

2.7.4




1

0

3


×




4

−2

1


=




6

11

−2


. The area is of the parallelogram is

√
36+121+4 =

√
161.

2.7.5 Let P = (−2,3,1), Q = (2,1,1), R = (1,2,−1), and S = (5,0,−1). We have
−→
PQ×−→PR =




4

−2

0


×




3

−1

−2


=




5

8

2


. The area of the parallelogram is

∥∥∥−→PQ×−→PR

∥∥∥=
√

52 +82 +22 =
√

93.

2.7.6 Let P = (1,0,3), Q = (4,1,0), and R = (−3,1,1).
−→
PQ×−→PR =




3

1

−3


×



−4

1

−2


=




1

18

7


. The

area of the triangle is
1

2

∥∥∥−→PQ×−→PR

∥∥∥= 1

2

√
1+182 +72 =

1

2

√
374.

2.7.7 Let P = (1,2,3), Q = (2,3,4), and R = (3,4,5).
−→
PQ×−→PR =




1

1

1


×




2

2

2


=




0

0

0


. The area of

the triangle is 0. It means the three points are on a line.

2.7.8 (i× j)× j = k× j = −i. However, i× (j× j) = 0 and so the cross product is not associative. The

expression u×v×w has no meaning.

2.7.10 Let u = [u1,u2,u3]
T , v = [v1,v2,v3]

T , and w = [w1,w2,w3]
T . Then

u× (v×w) =




u1

u2

u3


×




v2w3− v3w2

v3w1− v1w3

v1w2− v2w1


 =




u2(v1w2− v2w1)−u3(v3w1− v1w3)
u3(v2w3− v3w2)−u1(v1w2− v2w1)
u1(v3w1− v1w3)−u2(v2w3− v3w2)




=




u2v1w2−u2v2w1−u3v3w1 +u3v1w3

u3v2w3−u3v3w2−u1v1w2 +u1v2w1

u1v3w1−u1v1w3−u2v2w3 +u2v3w2




and

(u·w)v− (u·v)w = (u1w1 +u2w2 +u3w3)




v1

v2

v3


− (u1v1 +u2v2 +u3v3)




w1

w2

w3



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=




u1w1v1 +u2w2v1 +u3w3v1−u1v1w1−u2v2w1−u3v3w1

u1w1v2 +u2w2v2 +u3w3v2−u1v1w2−u2v2w2−u3v3w2

u1w1v3 +u2w2v3 +u3w3v3−u1v1w3−u2v2w3−u3v3w3


 .

We can see by careful inspection that these are equal.

2.7.11
u× (v×w) + v× (w×u) + w× (u×v)
= ((u·w)v− (u·v)w) + ((v·u)w− (v·w)u) + ((w·v)u− (w·u)v)
= ((u·w)v− (w·u)v) + ((v·u)w− (u·v)w) + ((w·v)u− (v·w)u)
= 0.

2.7.12






1

1

3


×



−7

−2

2




·


−5

−6

3


=




8

−23

5


·


−5

−6

3


= 113.

2.7.13 (a) We have [u,v,w] = (u× v)·w = [−2,1,2]T ·[0,0,1]T = 2, so the box product is positive.

This means that the system of vectors u,v,w is right-handed.

(b) We have [u,v,w] = (u×v)·w = [−2,−1,1]T·[1,1,2]T =−1, so the box product is negative and the

system is left-handed.

(c) We have [u,v,w] = (u×v)·w = [−1,−1,1]T·[3,1,4]T = 0, so the box product is zero. This means

that the volume of the parallelepiped spanned by u,v,w is empty, i.e., the vectors are coplanar.

(d) We have [u,v,w] = (u×v)·w = [0,0,2]T·[2,0,−1]T =−2, so the box product is negative and the

system is left-handed.

2.7.14 Yes. It will involve the sum of a product of integers and so it will be an integer.

2.7.15 It means that if you place them so that they all have their tails at the same point, the three will lie

in the same plane.

2.7.17 First, we have

(v×w)× (w× z) = ((v×w)·z)w− ((v×w)·w)z.

Since v×w is orthogonal to w, their dot product (v×w)·w is zero, and therefore

(v×w)× (w× z) = ((v×w)·z)w.

But then

(u×v)·((v×w)× (w× z)) = (u×v)·(((v×w)·z)w) = ((v×w)·z)((u×v)·w).

2.7.18 We have

‖u×v‖2 = ‖u‖2 ‖v‖2 sin2 θ

= ‖u‖2 ‖v‖2 (1− cos2 θ)

= ‖u‖2 ‖v‖2−‖u‖2 ‖v‖2 cos2 θ

= ‖u‖2 ‖v‖2− (u·v)2,

which implies the expression equals 0.
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3.1.6 We have 


x

y

z


=




1

2

0


+(2− s)




1

0

1


=




3

2

2


+ s



−1

0

−1


 .

3.1.15 From trigonometry, we have the following properties of the cosine function:

• cosθ is positive for 0≤ θ ≤ π
2 , and negative for π

2 ≤ θ ≤ π .

• cos(π−θ) =−cosθ .

By the method in Example 3.10, we calculated θ such that

cosθ =
u·v
‖u‖‖v‖ .

If 0≤ θ ≤ π
2 , the answer is θ . If π

2 ≤ θ ≤ π , the answer is φ = π−θ . But in the last case, the dot product

is negative and we have

cosφ = cos(π−θ) =−cosθ =
−u·v
‖u‖‖v‖ =

|u·v|
‖u‖‖v‖ .

So in either case we get the correct answer by taking the absolute value.

3.2.2 We have



x

y

z

w


=




1

2

0

0


+(1− r1)




1

0

0

1


+(r1 + r2)




−1

−1

1

0


=




2

2

0

1


+ r1




−2

−1

1

−1


+ r2




−1

−1

1

0


 .

3.2.8 The general solution of ax+ by+ cz+ dw = e involves at least three parameters. But the vector

equation of a plane only has two parameters, therefore ax+by+cz+dw = e does not describe a plane. (It

describes a 3-dimensional so-called hyperplane inside R4).

3.2.13 (a) If the dot product is negative, φ will be greater than π
2 , and therefore θ will end up being

negative. We can fix this, similarly to Exercise 3.1.15, by taking the absolute value of the dot product, i.e.,

by solving

cosφ =
|n·d|
‖n‖‖d‖ (2.1)

(b) From trigonometry, we know that sinθ = sin(π
2 −φ) = cosφ . Together with (2.1), this gives the desired

formula.

3.2.15 x·(a×b) = 0.

4.1.1 Yes, a 1×1-matrix is both a row vector and a column vector. However, a column vector of dimension

2 or greater can never be equal to a row vector, because one is an n× 1-matrix and the other is a 1× n-

matrix.
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4.1.2 x = 2, y =−1, z = 2.

4.1.3 2×3, 3×3, 4×2.

4.1.4 7.

4.2.3 The equation simplifies to X = B+B, so X =

[
0 6 0

2 −2 2

]
.

4.2.4 Suppose A+B = 0. Then we have −A = (−A)+ 0 = (−A)+ (A+B) = ((−A)+A)+B = (A+
(−A))+B = 0+B = B+ 0 = B. Here, we have used the additive unit law, the assumption A+B = 0,

associativity, commutativity, the additive inverse law, commutativity, and the additive unit law, in that

order.

4.2.5 Suppose A+B=A. Then B=B+0= 0+B=(A+(−A))+B=((−A)+A)+B=(−A)+(A+B)=
(−A)+A = A+(−A) = 0. Here, we have used the additive unit law, commutativity, the additive inverse

law, commutativity, associativity, the assumption A+B = A, commutativity, and the additive inverse law,

in that order.

4.3.2 By definition of scalar multiplication, this is equivalent to the matrix equation

[
x+0y+0z+w 2x+ y+2z+0w

3x+ y− z+0w 5x+ y+2z+w

]
=

[
1 2

6 5

]
.

By definition of equality of matrices, this is equivalent to the system of four scalar equations x+0y+0z+
w = 1, 2x+ y+2z+0w = 2, 3x+ y− z+0w = 6, 5x+ y+2z+w = 5. Solving the system of equations,

we find x = 1, y = 2, z =−1, w = 0.

4.3.3 0A = (0+0)A = 0A+0A. Now add −(0A) to both sides. Then 0 = 0A.

4.4.1

(a)

[
1

−1

]
, (b)

[
2

0

]
, (c)

[
4

−1

]
, (d)

[
0

0

]
, (e)

[
1

2

]
.

4.4.3 By columns:

x1




a11

a21

a31


+ x2




a12

a22

a32


+ x3




a13

a23

a33


 =




a11x1 +a12x2 +a13x3

a21x1 +a22x2 +a23x3

a31x1 +a32x2 +a33x3


 .

This is exactly the same as the “by rows” formula.

4.4.4 A =




1 −1 2 0

1 0 2 0

0 0 3 0

1 3 0 3



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4.4.5 A =




1 3 2 0

1 0 2 0

0 0 6 0

1 3 0 1




4.4.6 (a)

[
−3 −6 −9

−6 −3 −21

]
.

(b)

[
8 −5 3

−11 5 −4

]
.

(c) Not possible.

(d)

[
−3 3 4

6 −1 7

]
.

(e) Not possible.

(f) Not possible.

4.4.7 (a)



−3 −6

−9 −6

−3 3


.

(b) Not possible.

(c)




11 2

13 6

−4 2


.

(d) Not possible.

(e)




7

9

−2


.

(f) Not possible.

(g) Not possible.

(h)

[
2

−5

]
.

4.4.8

[
−1 −1

3 3

][
x y

z w

]
=

[
−x− z −w− y

3x+3z 3w+3y

]
=

[
0 0

0 0

]
. Solution is: w = −y, x = −z. So the

matrices are of the form

[
x y

−x −y

]
.
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4.4.9

[
1 2

3 4

][
1 2

3 k

]
=

[
7 2k+2

15 4k+6

]
,

[
1 2

3 k

][
1 2

3 4

]
=

[
7 10

3k+3 4k+6

]
.

Thus you must have 3k+3 = 15 and 2k+2 = 10. Solution is: k = 4.

4.4.10

[
1 2

3 4

][
1 2

1 k

]
=

[
3 2k+2

7 4k+6

]
,

[
1 2

1 k

][
1 2

3 4

]
=

[
7 10

3k+1 4k+2

]
.

However, 7 6= 3 and so there is no possible choice of k which will make these matrices commute.

4.4.12

[
−71 168

−112 265

]
.

4.4.13 A =

[
1 −1

−1 1

]
, B =

[
1 1

1 1

]
, C =

[
2 2

2 2

]
.

4.4.14 A =

[
1 −1

−1 1

]
, B =

[
1 1

1 1

]
.

4.4.15 A =




0 1 0

1 0 0

0 0 0


, B =




1 2 0

3 4 0

0 0 0


. Then AB =




3 4 0

1 2 0

0 0 0


 and BA =




2 1 0

4 3 0

0 0 0


.

4.4.16 A =

[
1 0

0 −1

]

4.4.18 (a) Not necessarily true.

(b) Not necessarily true.

(c) Not necessarily true.

(d) Necessarily true.

(e) Necessarily true.

(f) Not necessarily true.

(g) Not necessarily true.
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4.5.1 (a) Yes. (b) No. (c) Yes.

4.5.2 Yes B =C. Multiply AB = AC on the left by A−1.

4.5.3 No. For example, let A =

[
1 1

1 1

]
, B =

[
1 2

3 4

]
, and C =

[
2 3

2 3

]
. Then AB = AC but B 6=C.

4.5.4 A−1 =

[
3
7 −1

7
1
7

2
7

]
, B−1 =

[
−3

5
1
5

1 0

]
, C−1 =

[
0 1

3

1 −2
3

]
. D−1 does not exist because the reduced

echelon form of D is

[
1 1

2

0 0

]
, which has a row of zeros. E−1 does not exist because E is not a square

matrix.

4.5.5 A−1 =



−2 4 −5

0 1 −2

1 −2 3


, B−1 =



−2 0 3

0 1
3 −2

3

1 0 −1


. C−1 does not exist because the reduced eche-

lon form of C is




1 0 5
3

0 1 2
3

0 0 0


, which has a row of zeros. D−1 =




−1 1
2

1
2

1
2

3 1
2 −1

2 −5
2

−1 0 0 1

−2 −3
4

1
4

9
4


.

4.5.6

[
a b

c d

]−1

=

[
d

ad−bc
− b

ad−bc

− c
ad−bc

a
ad−bc

]
.

4.5.8 (a)




x

y

z


=




1

−2
3

0


.

(b)




x

y

z


=



−12

1

5


.




x

y

z


=




3c−2a
1
3b− 2

3c

a− c


.

4.5.9 Multiply both sides of AX = B on the left by A−1.

4.5.10 Multiply on both sides on the left by A−1. Thus 0 = A−10 = A−1(AX) = (A−1A)X = IX = X .

4.5.11 (AB)B−1A−1 = A(BB−1)A−1 = AA−1 = I and B−1A−1(AB) = B−1(A−1A)B = B−1IB = B−1B = I.
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4.5.12 It is not possible, because in that case, we would have A = IA = (AB)A = A(BA) = A0 = 0, and

therefore AB = 0, contradicting AB = I.

4.5.14 This follows from Problem 4.5.11 by taking A = B.

4.5.15 A−1A = AA−1 = I and so A is an inverse of A−1. Since (A−1)−1, by definition, is also an inverse of

A−1, we have (A−1)−1 = A by uniqueness.

4.5.16 (a) B is a right inverse of A, (b) B is a left inverse of A, (c) B is both a right inverse and left inverse

of A, (d) B is neither a right inverse nor a left inverse of A.

4.5.17 A =

[
1 0 0

0 1 0

]
, B =




1 0

0 1

0 0


, C =




1 0

0 1

1 1


.

4.5.18 The system can be written in matrix form as Av = b, where

A =




8 2 3

0 1 −2

1 0 1


 and b =



−1

2

1


 .

The inverse of A is

A−1 =




1 −2 −7

−2 5 16

−1 2 8


 .

Therefore,

v = A−1b =



−12

28

13


 .

4.5.19 To solve for A, we invert both sides of the equation (A+B)−1 = CB−1 and use matrix algebra to

get A+B = (CB−1)−1 = (B−1)−1C−1 = BC−1. Therefore, A = BC−1−B.

To solve for B, we note that A = BC−1−B = B(C−1− I). Multiplying both sides of the equation on

the right by the inverse of C−1− I, we get B = A(C−1− I)−1.

To solve for C, we take the original equation (A+B)−1 = CB−1 and right-multiply both sides of the

equation B. This yields C = (A+B)−1B.

4.5.20 The matrix A is right invertible. Two possible right inverses are



1 −2

0 1

0 0


 and



−2 1

0 1

1 −1


 .

The matrices B and C are not right invertible. The matrix D is right invertible with inverse
[
−3 2

2 −1

]
.

Since D is square, its right inverse is actually an inverse, and therefore unique.
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4.6.1 (a) E =

[
0 1

1 0

]
, (b) E =

[
2 0

0 1

]
, (c) E =

[
1 0

2 1

]
.

4.7.1 XTY =




0 −1 −2

0 −1 −2

0 1 2


, XY T = 1.

4.7.2 (a)

[
−3 −9 −3

−6 −6 3

]
.

(b)

[
5 −18 5

−11 4 4

]
.

(c)
[
−7 1 5

]
.

(d)

[
1 3

3 9

]
.

(e)




13 −16 1

−16 29 −8

1 −8 5


.

(f)

[
5 7 −1

5 15 5

]
.

(g) Not possible because B is a 2×3-matrix and E is a 2×1-matrix, cannot multiply BE.

4.7.3 A is antisymmetric, B is symmetric, C is neither, and D is both.

4.7.4 We have A = AT =−A. Therefore, each entry ai j of A is equal to its own negation. This implies that

ai j = 0, and therefore A is the zero matrix.

4.7.5 A = 1
2(A+AT )+ 1

2(A−AT ).

4.7.6 If A is antisymmetric then A =−AT . It follows that aii =−aii and so each aii = 0.

4.7.7 This follows from properties 2 and 3 of Proposition 4.67.

4.7.8 (Au)·v = (Au)T v = (uT AT )v = uT (AT v) = u·(AT v).

4.7.9 We need to show that (A−1)T is the inverse of AT . From properties of the transpose,

AT (A−1)T = (A−1A)T = IT = I,

(A−1)T AT = (AA−1)T = IT = I.

Hence AT is invertible and (AT )−1 = (A−1)T .
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4.7.10 We have (A−1)T = (AT )−1 = A−1, and therefore A−1 is equal to its own transpose, hence symmet-

ric.

4.9.1 Ciphertext: “ZRUJPZVAEJTWOXGJZV”.

4.9.2 The decryption matrix is

A−1 =




16 22 5

22 26 17

5 17 2


 .

Plaintext: “Spies are at the gate”.

4.9.3 The first two plaintext blocks are (8,5),(12,12) and the first two ciphertext blocks are (20,7),(22,24).
Eve solves the equation

A−1

[
20 22

7 24

]
=

[
8 12

5 12

]

to find the secret decryption matrix

A−1 =

[
3 5

1 2

]
.

The plaintext is “Hello, password is kiwifruit”.

4.9.4 Ciphertext: “VXUAJYY,AFJE”.

4.9.5 The inverse of the diffusion matrix is

A−1 =




11 2 21

21 11 2

2 21 11


 .

The plaintext is: “Eat more fruit”.

5.1.1 (a) x is not in the span. (b) y = 7u1−5u2. (c) z =−3u1 +4u2.

5.1.2 It is the plane 2x+3y− z = 0.

5.1.3 It is the hyperplane given by the equation x−2y−3z+2w = 0.

5.1.5 0u1 + . . .+0uk = 0.

5.1.6 (a) x = 3u2. (b) y is not in the span. (c) z = 2u1 +1u2.

5.2.1 u2 and u4 are redundant. We have u2 = 2u1 and u4 = 3u3−2u1.

5.2.3 The vectors are linearly dependent. We have u2 +3u3 +2u4 = 0.

5.2.5 The vectors are linearly dependent. We have w = 3u−2v.
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5.2.6




2 1 3 3

0 3 3 −3

3 5 8 1


≃




1 4 5 −2

0 1 1 −1

0 0 0 0


. Linearly independent subset: {u1,u2}.

5.2.10 


1 2 2 5 12

1 2 7 7 17

−2 −4 −4 −10 −24


≃




1 1 2 5 12

0 0 5 2 5

0 0 0 0 0


 .

Linearly independent subset: {u1,u3}. Since the rank is 2, this is the smallest possible.

5.2.12 We write the vectors as the columns of a matrix and reduce to reduced echelon form over Z3:




2 1 2 0

1 1 0 1

0 2 2 1


 ≃ . . .≃




1 0 2 2

0 1 1 2

0 0 0 0


 .

u3 and u4 are redundant. We have u3 = 2u1 +1u2 and u4 = 2u1 +2u2.

5.2.13 From a(u+v)+b(2u+w)+ c(w−2v) = 0 we get (a+2b)u+(a−2c)v+(b+ c)w = 0. Since

u,v,w are linearly independent, this last system has only the trivial solution, so a+2b = 0, a−2c = 0, and

b+c = 0. However, these three equations have non-trivial solutions, for example (a,b,c) = (2,−1,1). So

the vectors u+v, 2u+w, and w−2v are linearly dependent.

5.2.14 From a(u+v)+b(u+w)+c(w+v) = 0 we get (a+b)u+(a+c)v+(b+c)w = 0. Since u,v,w

are linearly independent, this last system has only the trivial solution, so a+b= 0, a+c= 0, and b+c = 0.

Solving, we find the unique solution (a,b,c) = (0,0,0). So the vectors u+v, u+w, and w+v are linearly

independent.

5.2.15 Assume a1z1 + . . .+akzk = 0. Multiplying both sides of the equation by A, we get

a1Az1 + . . .+akAzk = a1w1 + . . .+akwk = 0.

Since the wi are linearly independent, it follows that each ai = 0. Therefore the zi are linearly independent

as well.

5.3.1 (a) No. We have




1

0

0

0


 ∈V1 but 10




1

0

0

0


 /∈V1.

(b) This is not a subspace. The vector




1

1

1

1


 is in V2. However, (−1)




1

1

1

1


 is not.

(c) This is a subspace. It contains the zero vector and is closed with respect to vector addition and scalar

multiplication.
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(d) This is not a subspace. The vector




0

0

1

0


 is in V4. However (−1)




0

0

1

0


=




0

0

−1

0


 is not.

(e) This is a subspace. It contains the zero vector and is closed with respect to vector addition and scalar

multiplication.

5.3.2 Yes, this is a subspace because it contains the zero vector and is closed with respect to vector addition

and scalar multiplication. For example, if u,v ∈M, then w·u = 0 and w·v = 0, therefore w·(u+v) = 0,

therefore u+v ∈M.

5.3.3 Yes, this is a subspace.

5.3.4 (a) V1 is a subspace.

(b) V2 is not a subspace: not closed under addition. For example,




1

1

1


 ∈V2,




1

1

0


 ∈V2, but




1

1

1


+




1

1

0


=




0

0

1


 6∈V2.

(c) V3 is a subspace.

(d) V4 is not a subspace. For example, it does not contain the zero vector.

5.3.5 Because 0 ∈V and 0 ∈W , we have 0 ∈V ∩W . To show that V ∩W is closed under addition, assume

u,v ∈ V ∩W . Then u,v ∈V , and since V is a subspace we have u+v ∈V . Similarly u,v ∈W , and since

W is a subspace we have u+ v ∈W . It follows that u+ v is in both V and W , and therefore in V ∩W .

To show that V ∩W is closed under scalar multiplication, assume u ∈V ∩W and k ∈ R. Then u ∈V , and

therefore ku ∈V . Similarly ku ∈W , and therefore also ku ∈V ∩W .

5.4.11 (a) Basis








2

3

1

4


 ,




2

2

1

0








, dimension 2.

(b) Basis








1

3

1





, dimension 1.

(c) Basis








2

0

1


 ,




3

1

0





, dimension 2.

5.4.14 (a) No. For example, the vectors {0,0,0,0,0} are linearly dependent.

(b) No. For example, the vectors {0,0,0,0} are linearly dependent.
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(c) Yes, by Proposition 5.48.

(d) Correct, by Proposition 5.48.

(e) Yes, by Proposition 5.49.

(f) No, in fact no such set is a basis of R5, since every basis of R5 consists of 5 vectors by Theorem 5.38.

(g) No, as noted in the previous answer.

(h) No, no basis of R5 can have 6 elements.

(i) Yes, because a linearly independent set of vectors is a basis of the subspace it spans.

5.4.15 No. As a 5-dimensional space, R5 is spanned by 5 vectors. By the Exchange Lemma, any linearly

independent set can have size at most 5.

5.5.3 Rank 2, nullity 1, basis of column space








2

1

3


 ,




1

3

2





, basis of row space {[1,2,0] , [0,0,1]},

basis of null space








3

1

0





.

5.5.4 Clearly 0 ∈ null(A), since A0 = 0. If x,y ∈ null(A), then A(x+ y) = Ax+ Ay = 0+ 0 = 0, and

therefore x+ y ∈ null(A). Similarly, if x ∈ null(A) and k is a scalar, then A(kx) = k(Ax) = k0 = 0, so

kx ∈ null(A). So null(A) contains 0, and is closed under addition and scalar multiplication. It is therefore

a subspace of Rn.

5.5.5 Let

A =




a11 · · · a1n
...

. . .
...

am1 · · · amn


 .

Since col(A) is the span of the columns of A, we have v∈ col(A) if and only if there exists scalars u1, . . . ,un

such that

v = u1




a11
...

am1


+ . . .+un




a1n
...

amn


 .

But this equation is equivalent to

v =




a11 · · · a1n
...

. . .
...

am1 · · · amn







u1
...

un


= Au.

Therefore, v ∈ col(A) if and only if v is of the form Au, for some u ∈ Rn. In other words, col(A) =
{Au | u ∈ Rn}.
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5.5.6 The row space of A is the same as the column space of AT (except that it uses row vectors instead of

column vectors). Therefore, rank(A) = dim(row(A)) = dim(col(AT )) = rank(AT ).

5.5.7 From the theory of elementary matrices, we know that B can be written as a product of elementary

matrices B = E1 · · ·Ek. It follows that BA = E1 · · ·EkA. Since each elementary matrix corresponds to an

elementary row operation, it follows that BA and A are row equivalent. Therefore, BA and A have the

same row space. It follows that rank(BA) = dim(row(BA)) = dim(row(A)) = rank(A). This proves the

first claim. To show the claim about AC, first note that by the above argument, rank(CT AT ) = rank(AT ),
because CT is invertible. Then rank(AC) = rank(A) follows by taking the transpose.

5.5.8 Let {w1, . . . ,wk} be a basis of col(B)∩null(A). Then for each i, we have wi ∈ col(B), and therefore

by Exercise 5.5.5, we can find zi such that wi = Bzi. Also let {u1, . . . ,ur} be a basis for null(B). Now

assume x ∈ null(AB). Then ABx = 0, and therefore Bx ∈ null(A)∩ col(B). We therefore have

Bx = c1w1 + . . .+ ckwk = B(c1z1 + . . .+ ckzk).

This implies

x− (c1z1 + . . .+ ckzk) ∈ null(B)

and so it is of the form

x− (c1z1 + . . .+ ckzk) = d1u1 + . . .+drur.

It follows that

x ∈ span{z1, . . . ,zk,u1, . . . ,ur} .

Since we have shown that every element of null(AB) is in the span of these k+ r vectors, it follows that

dim(null(AB)) ≤ k+ r

= dim(col(B)∩null(A))+dim(null(B))

≤ dim(null(A))+dim(null(B)),

and therefore nullity(AB)≤ nullity(A)+nullity(B).

6.1.1 T1 and T3 are linear, and T2 is not. The transformation T3 is called the zero transformation.

6.1.3 We have T (av+ bw) = A(av+ bw) = a(Av)+ b(Aw) = aT (v) + bT (w) by properties of matrix

multiplication. Therefore, T is linear by Proposition 6.3.

6.1.4 We have

T (av+bw) = av+bw− u·(av+bw)

‖u‖2
u

= av−a
u·v
‖u‖2

u+bw−b
u·w
‖u‖2

u

= aT (v)+bT (w).

Therefore, T is linear.
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6.1.5 If T were a linear transformation, it should satisfy T (0) = 0, but it does not. Also T (v+w) 6=
T v+T w.

6.2.1 (a) The matrix of T is the elementary matrix that is like the identity matrix, except that the ( j, j)-
entry is b.

(b) The matrix of T is the elementary matrix that is like the identity matrix, except that the (i, j)-entry

is b.

(c) The matrix of T is the elementary matrix that switches the i th and the j th rows.

6.2.2 Since u1, . . . ,un is a basis of Rn, we know that A is invertible by Proposition 5.31. For each i =
1, . . . ,n, since Aei = ui, we have A−1ui = ei, and therefore

BA−1ui = Bei = vi = T (ui).

Now let w be some arbitrary vector in Rn. Since u1, . . . ,un is a basis, there exists a1, . . . ,an such that

w = a1u1 + . . .+anun. Then

BA−1w = BA−1(a1u1 + . . .+anun)

= a1(BA−1u1)+ . . .+an(BA−1un)

= a1T (u1)+ . . .+anT (un)

= T (a1u1 + . . .+anun) = T (w).

Therefore, BA−1 is the matrix of T .

6.2.3




5 1 5

1 1 3

3 5 −2






1 −1 0

2 −1 −1

−6 5 2



−1

=




5 1 5

1 1 3

3 5 −2






3 2 1

2 2 1

4 1 1


=




37 17 11

17 7 5

11 14 6


 .

6.2.4




1 2 6

3 4 1

1 1 −1






1 −1 0

1 0 −1

−8 6 3



−1

=




1 2 6

3 4 1

1 1 −1






6 3 1

5 3 1

6 2 1


=




52 21 9

44 23 8

5 4 1


 .

6.2.6 Recall that the desired matrix has i th column equal to proju(ei) =
u·ei

‖u‖2
u. Therefore, the matrix is

1

14




1 −2 3

−2 4 −6

3 −6 9


 .

6.2.7

1

35




1 5 3

5 25 15

3 15 9


 .
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6.3.1

[
cos
(

π
3

)
−sin

(
π
3

)

sin
(

π
3

)
cos
(

π
3

)
]
=

[
1
2 −1

2

√
3

1
2

√
3 1

2

]

6.3.8 First, we compute v′, the projection of v onto u.

v

u

v′

T (v)

We have

v′ = proju v =
u·v
‖u‖2

u.

But since u is a unit vector, this simplifies to v′ = (u·v)u. From the above picture, we see that T (v) =
v+2(v′−v) = 2v′−v = 2(u·v)u−v. To get the matrix of this linear transformation, we must compute

the image of the standard basis vectors:

T (e1) = 2(u·e1)u− e1 = 2a

[
a

b

]
−
[

1

0

]
=

[
2a2−1

2ab

]

T (e2) = 2(u·e2)u− e2 = 2b

[
a

b

]
−
[

0

1

]
=

[
2ab

2b2−1

]
.

Therefore, the matrix is

A =

[
2a2−1 2ab

2ab 2b2−1

]
.

6.4.2 [
1 0

0 −1

][
cos
(

2π
3

)
−sin

(
2π
3

)

sin
(

2π
3

)
cos
(

2π
3

)
]
=

[
−1

2 −1
2

√
3

−1
2

√
3 1

2

]

6.4.3 [
1 0

0 −1

][
−1 0

0 1

][
cos
(

π
6

)
−sin

(
π
6

)

sin
(

π
6

)
cos
(

π
6

)
]
=

[
−1

2

√
3 1

2

−1
2 −1

2

√
3

]

6.4.4 [
cos
(

π
4

)
−sin

(
π
4

)

sin
(

π
4

)
cos
(

π
4

)
][

1 0

0 −1

]
=

[
1
2

√
2 1

2

√
2

1
2

√
2 −1

2

√
2

]

6.4.5 


1 0 0

0 1 0

0 0 −1







cos
(

π
6

)
−sin

(
π
6

)
0

sin
(

π
6

)
cos
(

π
6

)
0

0 0 1


=




1
2

√
3 −1

2 0
1
2

1
2

√
3 0

0 0 −1



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6.4.6 (a) T (0) = T (00) = 0T (0) = 0. (b) T (−v) = T ((−1)v) = (−1)T (v) = −T (v). (c) T (a1v1 + . . .+
akvk) = T (a1v1)+ . . .+T (akvk) = a1T (v1)+ . . .+akT (vk).

6.4.7 The matrix of S ◦T is given by

BA =

[
0 −2

4 2

][
3 1

−1 2

]
=

[
2 −4

10 8

]
.

Now,

(S ◦T )(v) = BAv =

[
2 −4

10 8

][
2

−1

]
=

[
8

12

]
.

6.4.8 We have

(S ◦T )(v) = S(T (v)) = B(T (v)) =

[
1 2

−1 3

][
2

−3

]
=

[
−4

−11

]
.

6.4.9 The inverse of a reflection is a reflection, namely, itself. (For example, reflecting twice about the

x-axis returns each vector to its original position). The inverse of a rotation is a rotation by the same angle

in the opposite direction. The inverse of a shearing is a shearing in the opposite direction. The inverse of

a scaling by factor a is a scaling by factor 1/a.

6.4.10 The matrix of T−1 is A−1. [
2 1

5 2

]−1

=

[
−2 1

5 −2

]

6.4.11 The matrix of T is A =

[
4 −3

2 −2

]
. The matrix of T−1 is A−1 =

[
1 −3/2

1 −2

]
.

7.2.3 (a) −14. (b) 24. (c) 0.

7.2.4 ∣∣∣∣∣∣

1 2 1

2 1 3

2 1 1

∣∣∣∣∣∣
= 6.

7.2.5 ∣∣∣∣∣∣∣∣

2 3 1 1

4 3 1 2

1 1 0 1

3 2 1 2

∣∣∣∣∣∣∣∣
= 2.

7.2.6 ∣∣∣∣∣∣∣∣

1 2 −1 1

0 1 2 1

0 2 1 3

1 4 0 2

∣∣∣∣∣∣∣∣
= 6.
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7.2.7 ∣∣∣∣∣∣∣∣

1 0 0 1

2 1 1 0

0 0 0 2

2 1 3 1

∣∣∣∣∣∣∣∣
=−4.

7.3.1 (a) det(A) = 2. (b) det(B) =−40. (c) det(C) =−24.

7.4.1 (a) ∣∣∣∣∣∣

1 2 1

2 3 2

−4 1 2

∣∣∣∣∣∣
=−6.

(b) ∣∣∣∣∣∣

2 1 3

2 4 2

1 4 −5

∣∣∣∣∣∣
=−32.

(c) One can row reduce this, using only row operations of the third kind, to




1 2 1 2

0 −5 −5 −3

0 0 2 9
5

0 0 0 −63
10


 .

Therefore, the determinant is 63.

(d) One can row reduce this, using only row operations of the third kind, to




1 4 1 2

0 −10 −5 −3

0 0 2 19
5

0 0 0 −211
20


 .

Thus the determinant is 211.

7.5.1 (a) The transpose was taken and det(B) = det(A).

(b) Two rows were switched and det(B) =−det(A).

(c) The first row was added to the second row and det(B) = det(A).

(d) The second row was multiplied by 2 and det(B) = 2det(A).

(e) Two columns were switched and det(B) =−det(A).

7.5.2 By assumption, we can obtain a row of zeros by doing row operations. Row operations do not

change whether the determinant is zero, so the determinant must have been zero all along.
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7.5.3 If det(A) 6= 0, then A−1 exists. Therefore x = A−1Ax = A−10 = 0.

7.5.4 The matrix kI has k down the main diagonal and has determinant equal to kn by Theorem 7.14.

Using Theorem 7.23, it follows that det(kA) = det(kIA) = det(kI)det(A) = kn det(A).

7.5.5

det

([
1 2

3 4

][
−1 2

−5 6

])
=−8,

det

([
1 2

3 4

])
det

([
−1 2

−5 6

])
=−2×4 =−8.

7.5.6 This is not true at all. Consider A =

[
1 0

0 1

]
and B =

[
−1 0

0 −1

]
. Then det(A) = 1, det(B) = 1,

and det(A+B) = 0.

7.5.7 Since Ak = 0, we have det(A)k = det(Ak)= det(0)= 0. Therefore, it must be the case that det(A)= 0.

7.5.8 If A is orthogonal, we have det(A)2 = det(AT )det(A) = det(AT A) = det(I) = 1. Therefore the only

possible values for det(A) are ±1.

7.5.9 det(A) = det(P−1BP) = det(P−1)det(B)det(P) = 1
det(P) det(B)det(P) = det(B).

7.5.10 The determinant is
∣∣∣∣∣∣

1 1 1

1 a a2

1 b b2

∣∣∣∣∣∣
=

∣∣∣∣
a a2

b b2

∣∣∣∣−
∣∣∣∣

1 1

b b2

∣∣∣∣+
∣∣∣∣

1 1

a a2

∣∣∣∣= ab2−a2b−b2 +b+a2−a = (a−1)(b−1)(b−a).

Therefore the determinant is 0 if a = 1, b = 1, or a = b. In all other cases, the determinant is non-zero and

the matrix is invertible.

7.5.11 This follows because det(ABC) = det(A)det(B)det(C) and if this product is non-zero, then each

determinant in the product is non-zero. Therefore, each of these matrices is invertible.

7.5.12 The given condition is what it takes for the determinant to be non-zero. Recall that the determinant

of an upper triangular matrix is just the product of the entries on the main diagonal. The inverse will

also be upper triangular; this can be seen by noting that every invertible upper triangular can be written

as a product of upper triangular elementary matrices; the inverse of each such elementary matrix is upper

triangular, and therefore so is their product. The analogous statement about lower triangular matrices is

also true.

7.5.13 (a) False. Consider




1 1 0

1 2 1

0 1 1


.

(b) True.



522 Answers to selected exercises

(c) False.

(d) False.

(e) True.

(f) True.

(g) True.

(h) True.

(i) True.

(j) True.

7.6.2 (a) det(A) =−13 and so A is invertible. This inverse is

1

−13




∣∣∣∣
2 1

1 0

∣∣∣∣ −
∣∣∣∣

0 1

3 0

∣∣∣∣
∣∣∣∣

0 2

3 1

∣∣∣∣

−
∣∣∣∣

2 3

1 0

∣∣∣∣
∣∣∣∣

1 3

3 0

∣∣∣∣ −
∣∣∣∣

1 2

3 1

∣∣∣∣
∣∣∣∣

2 3

2 1

∣∣∣∣ −
∣∣∣∣

1 3

0 1

∣∣∣∣
∣∣∣∣

1 2

0 2

∣∣∣∣




T

=
1

−13



−1 3 −6

3 −9 5

−4 −1 2




T

=




1
13 − 3

13
4

13

− 3
13

9
13

1
13

6
13 − 5

13 − 2
13


 .

(b) det(B) = 7, so B is invertible. The inverse is
1

7




1 3 −6

−2 1 5

2 −1 2




T

=




1
7 −2

7
2
7

3
7

1
7 −1

7

−6
7

5
7

2
7


 .

(c) det(C) = 3, so C is invertible. The inverse is




1 0 −3

−2
3

1
3

5
3

2
3 −1

3 −2
3


.

(d) det(D) = 0, so D is not invertible.

(e) det(E) = 2, and so E is invertible. The inverse is



−1

2
3
2 0

3
2 −9

2 1
1
2 −1

2 0


.

7.6.3 (a) det(A) = 1, so A is invertible. The inverse is A−1 =

[
2 −1

−1 1

]
.
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(b) det(B) =−15, so B is invertible. The inverse is B−1 =
1

15



−1 −1 4

−4 11 1

8 −7 −2


.

(c) det(C) = 0, so C is not invertible.

7.6.4 We have

det(A) = 36, cof(A) =




6 12 6

12 6 −12

−6 6 6


 , adj(A) =




6 12 −6

12 6 6

6 −12 6


 ,

and therefore

A−1 =
1

36




6 12 −6

12 6 6

6 −12 6


 =




1
6

1
3 −1

6

1
3

1
6

1
6

1
6 −1

3
1
6


 .

7.6.5 We have

det(A) = 2, cof(A) =



−9 11 8

−2 2 2

5 −5 −4


 , adj(A) =



−9 −2 5

11 2 −5

8 2 −4


 ,

and therefore

A−1 =
1

2




−9 −2 5

11 2 −5

8 2 −4


 =




−9
2 −1 5

2

11
2 1 −5

2

4 1 −2


 .

7.6.6 No. It has non-zero determinant det(A) = cos2 t + sin2 t = 1 for all t, so it is invertible for all t.

7.6.7 det(A) =

∣∣∣∣∣∣

1 t t2

0 1 2t

t 0 2

∣∣∣∣∣∣
= t3+2, and so A has no inverse when t =− 3

√
2.

7.6.8 Since the matrix A has two identical rows, we have det(A) = 0 for all t. So this matrix is non-

invertible for all t.

7.6.9

det




et e−t cos t e−t sin t

et −e−t cos t− e−t sint −e−t sint + e−t cos t

et 2e−t sint −2e−t cos t


= 5e−t 6= 0

and so this matrix is always invertible.
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7.6.10

det




et 0 0

0 cos t sint

0 cos t− sint cos t + sint


= et .

Hence the inverse is

e−t




1 0 0

0 et cos t + et sint −et(cost− sin t)
0 −et sin t et cost




T

=




e−t 0 0

0 cos t + sin t −sint

0 sin t− cos t cost


 .

7.6.11 


et cos t sint

et −sin t cos t

et −cos t −sin t




−1

=




1
2e−t 0 1

2e−t

1
2 cost + 1

2 sint −sin t 1
2 sint− 1

2 cos t

1
2 sint− 1

2 cos t cos t −1
2 cos t− 1

2 sint


 .

7.7.1 False. Cramer’s rule only works when the coefficient matrix is invertible. In these cases, the solution

is always unique.

7.7.2 Solution is: (x,y) = (1,0).

7.7.3 Solution is: (x,y,z) = (1,1,0). For example,

y =

∣∣∣∣∣∣

1 3 1

2 1 −1

1 1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1

2 −1 −1

1 0 1

∣∣∣∣∣∣

= 1

7.7.4 The solution is (x,y,z) = (1,−1,2).

7.7.5 By Cramer’s rule, we have

y =

∣∣∣∣∣∣

1 t 1

1 s t2

1 1 s2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1 1

1 t t2

1 s s2

∣∣∣∣∣∣

=
s3 + t3+1−2− ts2− t2

ts2+ t2+ s− t− st2− s2
.

8.1.7 If v is an eigenvector corresponding to the eigenvalue λ , then A2v=A(Av) =A(λv)= λ (Av)= λ 2v.

Therefore, v is an eigenvector of A2 with eigenvalue λ 2.

8.1.8 We have λA−1v = A−1λv = A−1Av = v. Since v 6= 0, this implies λ 6= 0. Moreover, it implies

A−1v = λ−1v. Thus, λ−1 is an eigenvalue of A−1.
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8.1.9 Say Av = λv. Then cAv = cλv and so the eigenvalues of cA are just cλ where λ is an eigenvalue of

A.

8.1.10 Suppose v is an eigenvector of B, i.e., Bv = λv. Then BAv = ABv = Aλv = λAv, and therefore Av

is an eigenvector of B.

8.1.11 Let v be the eigenvector. Then Amv = λ mv and Amv = Av = λv. Therefore λ m = λ . Hence if

λ 6= 0, we must have λ m−1 = 1, which implies that λ =±1.

8.1.12 The formula follows from properties of matrix multiplication. However, this vector might not be

an eigenvector because it might equal 0 and eigenvectors cannot equal 0.

8.2.8 Yes.

[
0 1

0 0

]
works.

8.3.2 A rotation by 60◦ cannot map any non-zero vector to a scalar multiple of itself. The only rotations

of R2 that have real eigenvalues are rotations by 180◦ and 0◦. The former has eigenvalue−1, and the latter

has eigenvalue 1 (with all vectors being eigenvectors).

8.3.3 The matrix of T is

[
1 0

0 −1

]
. The eigenvectors and eigenvalues are:

{[
0

1

]}
for eigenvalue −1,

{[
1

0

]}
for eigenvalue 1.

8.3.4 The matrix of T is

[
0 1

1 0

]
. The eigenvectors and eigenvalues are:

{[
1

1

]}
for eigenvalue −1,

{[
−1

1

]}
for eigenvalue 1.

8.3.5 The matrix of T is




1 0 0

0 1 0

0 0 −1


 The eigenvectors and eigenvalues are:








0

0

1





 for eigenvalue −1,








1

0

0


 ,




0

1

0





 for eigenvalue 1.

8.4.2 The eigenvectors and eigenvalues are:








2

0

1


 ,



−2

1

0





 for eigenvalue 1,








7

−2

2





 for eigenvalue 3.



526 Answers to selected exercises

The matrix P needed to diagonalize the above matrix is




2 −2 7

0 1 −2

1 0 2




and the diagonal matrix D is 


1 0 0

0 1 0

0 0 3


 .

8.4.3 The eigenvalues are −1 and 1. The eigenvectors corresponding to the eigenvalues are:








10

−2

3





 for eigenvalue −1,








7

−2

2





 for eigenvalue 1.

Since there are only 2 linearly independent eigenvectors, this matrix is not diagonalizable.

8.4.4 The eigenvectors and eigenvalues are:








0

1

0





 for eigenvalue −3,







−2

1

1





 for eigenvalue 3,







−1

0

1





 for eigenvalue −2.

The matrix P needed to diagonalize the above matrix is




0 −2 −1

1 1 0

0 1 1




and the diagonal matrix D is 

−3 0 0

0 3 0

0 0 −2


 .

8.5.1 First we write A = PDP−1.
[

1 2

2 1

]
=

[
−1 1

1 1

][
−1 0

0 3

][
−1

2
1
2

1
2

1
2

]

Therefore A10 = PD10P−1.

[
1 2

2 1

]10

=

[
−1 1

1 1

][
(−1)10 0

0 310

][
−1

2
1
2

1
2

1
2

]
=

1

2

[
310 +1 310−1

310−1 310 +1

]
.

8.5.4 B =

[
−1 −2

3 4

]
.
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8.5.5 A =




0 0 2

−1 1 2

−1 0 3


.

8.8.3 The solution is

eAtC =

[
8e2t −6e3t

18e3t −16e2t

]
.

8.9.1 (a) λ = 2 has algebraic multiplicity 2 and geometric multiplicity 1. Since the sum of the geometric

multiplicities of all eigenvalues is 1, the matrix is not diagonalizable.

(b) λ = 1 has algebraic and geometric multiplicity 1; λ =−3 has algebraic and geometric multiplicity

1. Since the sum of the geometric multiplicities is 2, the matrix is diagonalizable.

(c) λ = 2 has algebraic and geometric multiplicity 2, λ = 3 has algebraic and geometric multiplicity 1.

Since the sum of the geometric multiplicities is 3, the matrix is diagonalizable.

(d) λ = 3 has algebraic multiplicity 3 and geometric multiplicity 2. Since the sum of the geometric

multiplicities of all eigenvalues is 2, the matrix is not diagonalizable.

(e) λ = −1 has algebraic multiplicity 3 and geometric multiplicity 1. Since the sum of the geometric

multiplicities of all eigenvalues is 1, the matrix is not diagonalizable.

8.9.2 (a) Not diagonalizable.

(b) Diagonalizable.

(c) Not diagonalizable.

8.10.3 (a) The characteristic polynomial of A is a quadratic polynomial, and therefore it is of the form

p(λ ) = λ 2 + bλ + c, for some r,s ∈ R. By the Cayley-Hamilton theorem, p(A) = 0, therefore

A2 =−bA− cI. This proves that A2 is a linear combination of A and I.

(b) A =




0 1 0

0 0 1

0 0 0


.

8.11.1 (a) The characteristic polynomial is λ 2−4λ +5, the eigenvalues are λ1 = 2+ i and λ2 = 2− i,

and the corresponding basic eigenvectors are v1 = [1, i ]T and v2 = [1,−i ]T , respectively. The matrix

A is diagonalizable as A = PDP−1, where

P =

[
1 1

i −i

]
and D =

[
2+ i 0

0 2− i

]
.

(b) The characteristic polynomial is λ 2 + 1, the eigenvalues are λ1 = i and λ2 = −i, and the corre-

sponding basic eigenvectors are v1 = [1− i,−1]T and v2 = [1+ i,−1]T , respectively. Therefore

B = PDP−1, where

P =

[
1− i 1+ i

−1 −1

]
and D =

[
i 0

0 −i

]
.



528 Answers to selected exercises

(c) The characteristic polynomial is x2−2x+2−(x3−2x2+2x)−λ 3−λ 2+2 = (1−λ )(λ 2−2λ +2).
The eigenvalues are λ1 = 1, λ2 = 1+ i, and λ3 = 1− i. The corresponding basic eigenvectors are

v1 = [1,1,0]T , v2 = [−1−2i,−i,1]T , and v2 = [1+2i, i,1]T , respectively. Therefore C = PDP−1,

where

P =




1 −1−2i 1+2i

1 −i i

0 1 1


 and D =




1 0 0

0 1+ i 0

0 0 1− i


 .

(d) The characteristic polynomial is −λ 3 + 4λ 2− 5λ + 2 = −(λ − 1)(λ − 1)(λ − 2). Therefore the

eigenvalues are λ = 1 with algebraic multiplicity 2 and λ = 2 with algebraic multiplicity 1. The

eigenspace for λ = 1 is 1-dimensional; it is spanned by [1,1,−1]T . Since the geometric multiplicity

of the eigenvalue 1 is less than its algebraic multiplicity, the matrix is not diagonalizable, not even

over the complex numbers.

8.11.2 (a) By Proposition 8.51, the other eigenvalue is 1−2i with corresponding eigenvector

[
1

−i

]
.

(b) From the eigenvalues and eigenvectors, we know that A = PDP−1, where

P =

[
1 1

i −i

]
and D =

[
1+2i 0

0 1−2i

]
.

(c) A = PDP−1 =

[
1 2

−2 1

]
.

9.1.13 Let f (i) be the i th component of a vector x ∈ Rn. Thus a typical element in Rn is ( f (1), . . . , f (n)).

9.2.1 0 = 0u1 + . . .+0uk.

9.2.5 Let S =
{

e0,e1,e2, . . .
}

. To prove the left-to-right implication, assume a ∈ spanS. Then there exists

some finite subset
{

ek1 ,ek2 , . . . ,ekn
}

of S and scalars b1, . . . ,bn such that a = b1ek1 + . . .+bnekn . Let N ∈N
be a number that is greater than k1, . . . ,kn. Since each of the sequences ek1 , . . . ,ekn is zero after the first N

elements, the same is true for their linear combination a. Thus, a is finitely supported.

To prove the right-to-left direction, assume a is finitely supported. Let N ∈ N such that ak = 0 for

all k ≥ N. Then a = (a0,a1, . . . ,aN−1,0,0,0, . . .), with infinitely many zeros following. Therefore, a =
a0e0 +a1e1 + . . .+aN−1eN−1, and it follows that a ∈ spanS.

9.2.8 Let pi(x) denote the i th of these polynomials. Suppose C1 p1(x)+ . . .+C4 p4(x) = 0. Then collecting

terms according to the exponent of x, we have

C1a1 +C2a2 +C3a3 +C4a4 = 0,

C1b1 +C2b2 +C3b3 +C4b4 = 0,

C1c1 +C2c2 +C3c3 +C4c4 = 0,

C1d1 +C2d2 +C3d3 +C4d4 = 0.

The matrix of coefficients is just the transpose of the above matrix. There exists a non-trivial solution if

and only if the determinant of this matrix equals 0.
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9.2.9 To determine whether R is linearly independent, we must solve the equation

a(2u−w)+b(w+v)+ c(3v+ 1
2u) = 0.

If the only solution is the trivial solution, the set is linearly independent. We rewrite the equation as

follows.

(2a+ 1
2c)u+(b+3c)v+(−a+b)w = 0.

Since u,v,w are linearly independent, the coefficients in the last equation must all equal 0. In other words:

2a+ 1
2c = 0,

b+3c = 0,

−a+b = 0.

We solve and find that the unique solution is a = b = c = 0. Therefore, the set R is linearly independent.

9.3.2 No. It is not closed under scalar multiplication.

9.3.3 No. It is not closed under addition.

9.3.8 This is not a subspace.

[
1
1
1

]
is in it, but 5

[
1
1
1

]
is not.

9.4.1 (a) Yes. Suppose

c1(x
3 +1)+ c2(x

2 + x)+ c3(2x3 + x2)+ c4(2x3− x2−3x+1) = 0.

Then collect equal powers of x:

(c1 +2c3 +2c4)x
3 +(c2 + c3− c4)x

2 +(c2−3c4)x+(c1 + c4) = 0.

Does the system
c1 +2c3 +2c4 = 0

c2 + c3− c4 = 0

c2−3c4 = 0

c1 + c4 = 0

have a non-trivial solution? The only solution is

c1 = 0, c2 = 0, c3 = 0, c4 = 0,

and therefore, the polynomials are linearly independent. Since there are 4 linearly independent

polynomials in a 4-dimensional space, they form a basis.

(b) Yes.

9.4.6 Yes, because the set of 5 linearly independent vectors can be extended to a basis B of V . But since

V is 5-dimensional, B has only 5 elements, which must be the original 5 vectors.
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9.4.7 No. Since V has a spanning set of size 5, the 6 vectors cannot be linearly independent by the

Exchange Lemma.

9.4.11 (a) In case k = 3, the following sequences form a basis for W3:

(1,0,0,1,0,0,1,0,0,1, . . .),
(0,1,0,0,1,0,0,1,0,0, . . .),
(0,0,1,0,0,1,0,0,1,0, . . .).

Therefore, W3 is a 3-dimensional space. For general k, the situation is analogous and the dimension

of Wk is k.

(b) Let U be the set of all periodic sequences of all periods. We can find an (infinite) spanning set for U

by taking all the basis vectors for all of the spaces Wk:

(1,1,1,1,1,1,1,1,1,1, . . .) (period 1),

(1,0,1,0,1,0,1,0,1,0, . . .) (period 2),

(0,1,0,1,0,1,0,1,0,1, . . .) (period 2),

(1,0,0,1,0,0,1,0,0,1, . . .) (period 3),

(0,1,0,0,1,0,0,1,0,0, . . .) (period 3),

(0,0,1,0,0,1,0,0,1,0, . . .) (period 3),

(1,0,0,0,1,0,0,0,1,0, . . .) (period 4),

(0,1,0,0,0,1,0,0,0,1, . . .) (period 4),

(0,0,1,0,0,0,1,0,0,0, . . .) (period 4),

(0,0,0,1,0,0,0,1,0,0, . . .) (period 4),

and so on. However, these sequences are not linearly independent. For example, we can obtain the

sequence (1,0,1,0,1,0,1,0, . . .) of period 2 as a linear combination of two sequences of period 4,

namely (1,0,0,0,1,0,0,0, . . .) and (0,0,1,0,0,0,1,0, . . .). By Proposition 9.47, we know that it is

possible to shrink the above spanning set to a basis by removing certain sequences. How exactly to

do this is an interesting question. One way to construct a basis is to keep exactly those sequences of

period k that start with ℓ zeros, where gcd(ℓ,k) = 1. Proving that this really works is an interesting

project.

9.4.12 When we add two number of the form a+b
√

2, we get another number of the same form. When

we multiply a number of the form a+b
√

2 by a (rational) scalar, we get another number of the same form.

Also, 0 = 0+ 0
√

2 is of the required form. The 8 axioms of a vector space are satisfied because all of

them are laws of the arithmetic of real numbers. A basis is
{

1,
√

2
}

. By definition, the span of these gives

the collection of vectors. To prove that they are linearly independent, assume a+b
√

2 = 0, where a,b are

rational numbers. If b 6= 0, then
√

2 = −a
b
, which cannot happen because

√
2 is irrational. If a 6= 0, then

1√
2
=−b

a
, which again cannot happen since 1√

2
is irrational. Hence both a,b = 0. Therefore, 1 and

√
2 are

linearly independent over the rational numbers, and form a basis. The dimension of the space is 2.

9.5.6 The block length is n = r−1 = 15 and the message length is k = n− r = 11. The check matrix and

generator matrix are not unique, because there are different ways of ordering the columns of the check
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matrix. Here is one possible answer:

H =




1 1 0 1 1 0 1 0 1 0 1 1 0 0 0
1 0 1 1 0 1 1 0 0 1 1 0 1 0 0
0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 1


 , G =




1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 1 0 1 0 1 0 1
1 0 1 1 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1




.

With these matrices, the encoding of 00110011000 10100000001 is 001100110000110 101101110110101.

The error syndrome for 001000010010000 is 1010, which corresponds to an error in bit 2. We find

that the corrected code block is 011000010010000, and the decoding is 01100001001. The error syn-

drome for 010000100000001 is 0110, which corresponds to an error in bit 3. The corrected code block is

011000100000001 and the decoding is 01100010000. However, if you have used a different check matrix

and/or generator matrix, your answers might differ.

10.1.1 (a) We have T




0

0

0


=

[
1

0

]
, so T does not preserve the zero vector.

(b) We have T




0

1

0


=

[
2

2

]
and T




0

2

0


=

[
8

4

]
, so T does not preserve scalar multiplication.

(c) We have T




π/2

0

0


=

[
1

π/2

]
and T




π
0

0


=

[
0

π

]
, so T does not preserve scalar multiplication.

10.1.3 Yes, yes, no, yes.

10.1.6 (a) Let a = (a0,a1,a2, . . .). Then the equation shift(a) = a is equivalent to

(a1,a2,a3, . . .) = (a0,a1,a2, . . .),

which translates to the recurrence an+1 = an. The only free variable is a0, and the only solutions are

the constant sequences. They form a 1-dimensional space with basis {(1,1,1, . . .)}.

(b) The equation shift(a) =−a is equivalent to

(a1,a2,a3, . . .) = (−a0,−a1,−a2, . . .),

which translates to the recurrence an+1 = −an. The only free variable is a0, and the solutions form

a 1-dimensional space with basis {(1,−1,1,−1, . . .)}.
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(c) The equation shift(shift(a)) = shift(a)+2a is equivalent to

(a2,a3,a4, . . .) = (a1 +2a0,a2 +2a1,a3 +2a2, . . .),

which translates to the recurrence an+2 = an+1 + 2an. The only free variables are a0 and a1. The

most obvious basis vectors are obtained by letting (a0,a1) = (1,0) and (a0,a1) = (0,1), giving the

sequences (1,0,2,2,6,10,22, . . .) and (0,1,1,3,5,11,21, . . .). Thus,

{(1,0,2,2,6,10,22, . . .),(0,1,1,3,5,11,21, . . .)}

is a basis for the solutions. Another basis, which is slightly more convenient, is

{(1,−1,1,−1,1,−1, . . .),(1,2,4,8,16,32, . . .)} .

10.2.1 Yes, no, yes, no.

10.3.1 By linearity we have T (x2) = 1, T (x) = T (x2 + x− x2) = T (x2 + x)− T (x2) = 5− 1 = 4, and

T (1) = T ((x2 + x+1)− (x2 + x)) = T (x2 + x+1)−T (x2 + x) = −1−5 = −6. Thus T (ax2 +bx+ c) =
aT (x2)+bT (x)+ cT (1) = a+4b−6c.

10.3.2 The matrix A is invertible if and only if its rank is n, which means that v1, . . . ,vn are linearly

independent and therefore a basis of Rn. The existence of T then follows from Theorem 10.20.

10.4.2 [x]B =




2

1

−1


.

10.4.3 (a) The i th column of [T ]E,E is [T (ei)]E = T (ei), so

[T ]E,E =




3 1 1

3 2 3

3 3 −1


 .

(b) The i th column of [T ]B,B is [T (vi)]B. This requires a calculation:

T (v1) = T




1

0

0


=




3

3

3


=−3




1

0

0


+0




1

1

0


+3




2

1

1


 , therefore [T (v1)]B =



−3

0

3


 .

T (v2) = T




1

1

0


=




4

5

6


=−7




1

0

0


−1




1

1

0


+6




2

1

1


 , therefore [T (v2)]B =



−7

−1

6


 .

T (v3) = T




2

1

1


=




8

11

8


=−11




1

0

0


+3




1

1

0


+8




2

1

1


 , therefore [T (v3)]B =



−11

3

8


 .

We therefore have

[T ]B,B =



−3 −7 −11

0 −1 3

3 6 8


 .
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10.4.4 MB2B1
=

[
1 −1

0 1

]
.

10.4.7 Recall that projv(w) =
v·w
‖v‖2 v. The desired matrix has i th column equal to projv(ei). Therefore, the

desired matrix is

1

14




1 −2 3

−2 4 −6

3 −6 9


 .

10.4.8 We have T (v1) = v1, T (v2) = 0, and T (v3) = 0. Therefore

[T ]B,B =




1 0 0

0 0 0

0 0 0


 .

10.4.9 Since M is invertible, its columns [v1]B , . . . , [vn]B are linearly independent and span Rn; it follows

that v1, . . . ,vn is a basis of V . To show that [T ]C,B =NM−1, it is sufficient to check that NM−1 [vi]B = [wi]C,

for all i = 1, . . . ,n. But by assumption, [vi]B is the i th column of M, so that [vi]B = Mei, where ei is the

i th basis vector. Therefore M−1 [vi]B = ei. On the other hand, Nei is the i th column of N, i.e., [wi]C. We

therefore have

NM−1 [vi]B = Nei = [wi]C ,

as desired.

11.1.1 (a) Yes, it is an inner product. Since A = AT , symmetry and linearity follow as in Example 11.3.

For the positive definite property, note that 〈u,u〉 = u2
1 +2u2

2 ≥ 0, and equality holds if and only if

u1,u2 = 0.

(b) Yes, it is an inner product. Since A = AT , symmetry and linearity follow as in Example 11.3. For

the positive definite property, we have 〈u,u〉 = 3u2
1 + 2u1u2 + 3u2

2 = (u1 + u2)
2 + 2u2

1 + 2u2
2 ≥ 0.

Equality holds if and only if u1 +u2, u1, and u2 are all zero, which is the case if and only if u = 0.

(c) No, it is not symmetric. For example, 〈
[

1

0

]
,

[
0

1

]
〉= 1 but 〈

[
0

1

]
,

[
1

0

]
〉= 0.

(d) No, it is not positive definite. For example, 〈
[

0

1

]
,

[
0

1

]
〉=−1.

(e) No, it is not positive definite. For example, 〈
[

1

−1

]
,

[
1

−1

]
〉= 0 although

[
1

−1

]
6= 0.

11.1.2 (a) 〈1,x〉= ∫ 1
0 1 · xdx =

∫ 1
0 xdx = 1

2 .

(b) 〈x,x2〉=
∫ 1

0 x · x2 dx =
∫ 1

0 x3 dx = 1
4 .

(c) 〈1+ x,2+ x2〉=
∫ 1

0 (1+ x)(2+ x2)dx =
∫ 1

0 2+ x2 +2x+ x3 dx = 43
12 .

11.1.3 (a) ‖1‖2 = 〈1,1〉=
∫ 1

0 1dx = 1, therefore ‖1‖= 1.
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(b) ‖x‖2 = 〈x,x〉 =
∫ 1

0 x2 dx = 1
3 , therefore ‖x‖= 1√

3
.

(c)
∥∥x2 +1

∥∥2
= 〈x2 +1,x2 +1〉=

∫ 1
0 x4 +2x2 +1dx = 1

5 +
2
3 +1 = 28

15 , therefore
∥∥x2 +1

∥∥=
√

28
15 .

11.1.4 The operation 〈u,v〉= u∗v is an inner product on R3. Symmetry and linearity are straightforward

to check, as is the positive definite property. Therefore, the claimed inequality holds by Proposition 2.27.

11.1.5 (a) We have 〈x,x〉=
∫ 1
−1 x2 dx= 2

3 , 〈x2,x2〉=
∫ 1
−1 x4 dx= 2

5 , and 〈x,x2〉=
∫ 1
−1 x3 dx= 0. Therefore

cosθ =
〈x,x2〉
‖x‖‖x2‖ = 0.

Therefore, the angle θ is π/2 radians, or 90 degrees. In other words, x and x2 are orthogonal in

C[−1,1].

(b) We have 〈x,x〉= ∫ 1
−1 x2 dx = 2

3 , 〈x3,x3〉= ∫ 1
−1 x6 dx = 2

7 , and 〈x,x3〉= ∫ 1
−1 x4 dx = 2

5 . Therefore

cosθ =
〈x,x3〉
‖x‖‖x3‖ =

2
5√

2
3

√
2
7

=

√
21

5
.

The angle θ is cos−1(
√

21
5 ), which is approximately 0.4115 radians or 23.58 degrees.

11.1.6 (a) By assumption, a and b are square summable. Let N = a2
0 +a2

1 + . . . and M = b2
0+b2

1 + . . .. By

the Cauchy-Schwarz inequality, for all n, we have

|a0| |b0|+ . . .+ |an| |bn| ≤
√
|a0|2 + . . .+ |an|2

√
|b0|2 + . . .+ |bn|2 ≤

√
N
√

M.

Therefore the series |a0b0|+ |a1b1|+ . . . is bounded. By the absolute convergence test from calculus, it

follows that the series a0b0 +a1b1 + . . . converges.

(b) It is clear that the zero sequence is square summable, and also that a scalar multiple of a square

summable sequence is square summable. Hence HilbR contains the zero vector and is closed under scalar

multiplication. To show that it is closed under addition, assume a,b ∈HilbR, and let c = a+b. We must

show that c is square summable. But

c2
0 +c2

1 + . . . = (a0+b0)
2 +(a1+b1)

2 + . . . = (a2
0 +a2

1 + . . .)+(b2
0 +b2

1 + . . .)+(2a0b0 +2a1b1 + . . .).

The series a2
0 + a2

1 + . . . and b2
0 + b2

1 + . . . converge by assumption, and the series 2a0b0 + 2a1b1 + . . .
converges by part (a). It follows that HilbR is closed under addition.

(c) Symmetry and linearity follow straightforwardly from properties of convergent series. For example,

〈a,kb+ ℓc〉 = a0(kb0+ ℓc0)+a1(kb1+ ℓc1)+ . . .

= k(a0b0 +a1b1 + . . .)+ ℓ(a0c0 +a1c1 + . . .)

= k〈a,b〉+ ℓ〈a,c〉.

As for the positive definite property, note that

〈a,a〉 = a2
0 +a2

1 + . . . ≥ 0.

Moreover, since all terms in the series are ≥ 0, it follows that 〈a,a〉= 0 if and only if ai = 0 for all i.
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11.2.1 We have 〈u1,u2〉= uT
1 Au2 = 0, 〈u1,u3〉= uT

1 Au3 =−5, 〈u1,u4〉= uT
1 Au4 = 0, 〈u2,u3〉= uT

2 Au3 =
0, 〈u2,u4〉 = uT

2 Au4 = 32, and 〈u3,u4〉 = uT
3 Au4 = 54. Therefore, u1 ⊥ u2, u1 ⊥ u4, and u2 ⊥ u3. None

of the other pairs of vectors are orthogonal.

11.2.2 f1 ⊥ f2, f1 ⊥ f4, f2 ⊥ f3, and f3 ⊥ f4.

11.2.3 (a) Let p(x) = ax3+bx2+cx+d. Then 〈p(x),x2〉= 2
5b+ 2

3d and 〈p(x),x〉= 2
5a+ 2

3c. Therefore,

p(x) is in the orthogonal complement of
{

x2,x
}

if and only if 2
5b+ 2

3d = 0 and 2
5a+ 2

3c= 0. It follows

that b =−5
3d and a =−5

3c. The general solution is p(x) =−5
3cx3− 5

3dx2 + cx+d. A basis for the

orthogonal complement is
{
−5

3x3 + x,−5
3x2 +1

}
.

(b) A basis for the orthogonal complement of {x+1} is
{

5x3−1,3x2−1,3x−1
}

.

11.2.4 (a) Orthonormal (therefore also orthogonal). (b) Neither orthogonal nor orthonormal. (c) Orthog-

onal (not orthonormal). (d) Orthonormal (therefore also orthogonal).

11.2.5 v = 1
4u1 +

2
3u2− 4

5u3.

11.2.6 We have v = a1u1 +a2u2 +a3u3 where a1 =
〈u1,v〉
〈u1,u1〉 =

1
2 . So the first coordinate is 1

2 .

11.3.1 u1 =




1

2

3


, u2 =




1

4

−3


.

11.3.2 u1 =




0

1

1

0


, u2 =




3

−1

1

−1


.

11.3.3 u1 =




1

0

1

0


, u2 =




0

3

0

−1


, u3 =




0

1

0

3


.

11.3.4 u1 =




1

0

2


, u2 =




1

1

−1


, u3 =



−1

1

0


.

11.3.5 u1 =




1

−1

1

1


, u2 =




1

1

−1

1


, u3 =




−1

1

1

0


.

11.3.6 u1 = 1, u2 = x−1, x2−2x+ 2
3 .
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11.3.7 The orthonormal basis is

{
u1

‖u1‖
,

u2

‖u2‖

}
=





1√
14




1

2

3


 ,

1√
26




1

4

−3





.

11.4.1 The best approximation is v′ = 3u1−u2 =



−2

5

2


.

11.4.2 The best approximation is v′ = u1 +2u2−u3 =




1

3

−2

4


.

11.4.3 Let p0, p1, . . . be the Legendre polynomials from Section 11.3. The approximating polynomials

are:

f0(x) =
3

4
p0,

f1(x) =
3

4
p0−

1

2
p1,

f2(x) =
3

4
p0−

1

2
p1−

15

32
p2,

f3(x) =
3

4
p0−

1

2
p1−

15

32
p2 +0p3,

f4(x) =
3

4
p0−

1

2
p1−

15

32
p2 +0p3 +

105

256
p4.

f

f0

f1

f2 = f3

f4
x

1−1

11.4.4 π2

3 − 4
1 cosx+ 4

4 cos2x− 4
9 cos3x+ 4

16 cos4x− 4
25 cos5x± . . ..

11.5.1 (x,y,z) = (−1,−1,2).

11.5.2 (x,y,z) = (2,2,−1).

11.5.3 y = 2+2x.

11.5.4 y = 1− x+ x2.



537

11.6.1 (a) Yes. (b) Yes. (c) No. (d) Yes.

11.6.2 A and C are orthogonal (and therefore isometries). D is an isometry but not orthogonal. B is neither

orthogonal nor an isometry.

11.6.3 A and D are orthogonal, but B and C are not.

11.7.1 (a) A = PDP−1 where D =

[
−2 0

0 3

]
, P = 1√

5

[
2 1

−1 2

]
.

(b) A = PDP−1 where D =

[
2 0

0 4

]
, P = 1√

2

[
1 1

−1 1

]
.

(c) A = PDP−1 where D =




0 0 0

0 1 0

0 0 3


, P =




1√
3

1√
2

1√
6

− 1√
3

0 2√
6

1√
3
− 1√

2

1√
6


.

(d) A = PDP−1 where D =




1 0 0

0 1 0

0 0 7


, P =




1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6

0 − 1√
3

2√
6


.

11.7.2 Suppose A is orthogonally diagonalizable. Then A = PDP−1, where D is diagonal and P is orthog-

onal. Since P is orthogonal, we have P−1 = PT , and therefore A = PDPT . Moreover, since D is diagonal,

we have D = DT . It follows that AT = (PDPT )T = (PT )T DT PT = PDPT = A, so A is symmetric.

11.8.1 (a) Positive semidefinite. (b) Positive definite. (c) Not symmetric (therefore neither). (d) Positive

semidefinite. (e) Neither.

11.8.2 (a) Eigenvalues: {1,6}. Positive definite. (b) Eigenvalues: {0,13}. Positive semidefinite. (c)

Eigenvalues: {0,2,3}. Positive semidefinite. (d) Eigenvalues: {−1,4,8}. Neither.

11.8.3 (a) No (neither positive definite nor semidefinite). (b) Yes. (c) No (positive semidefinite but not

definite). (d) Yes.

11.8.4 The characteristic polynomials are:

det(A−λ I) = λ 2−3λ −2,

det(B−λ I) = −λ 3 +4λ 2−4λ +1,

det(C−λ I) = λ 4−6λ 3 +9λ 2−3λ +0.

For A, the coefficients are not weakly alternating, so A is not positive semidefinite. For B, the coefficients

are strongly alternating, so B is positive definite. For C, the coefficients are weakly, but not strongly

alternating, so C is positive semidefinite, but not positive definite.

11.9.1 All of them except (e) and (g).
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11.9.3 f (x,y,z) = vT Av, where

A =




3 1 −2

1 1 1.5

−2 1.5 2


 .

11.9.4 3u2 + v2 + vw+w2.

11.9.5 x = u+ v and y = u− v gives f = 4u2 +8v2.

11.9.7 (a) Eigenvalues: λ1 = 1, λ2 =
1
2 . Principal axes: u1 =

[
1

0

]
and u2 =

[
0

1

]
. u1-intercept: 1,

u2-intercept:
√

2.

(b) Eigenvalues: λ1 = 1, λ2 = 6. Principal axes: u1 =
1√
5

[
2

−1

]
and u2 =

1√
5

[
1

2

]
. u1-intercept: 1,

u2-intercept: 1√
6
.

(c) Eigenvalues: λ1 = 2, λ2 = 4. Principal axes: u1 =
1√
2

[
1

−1

]
and u2 =

1√
2

[
1

1

]
. u1-intercept: 1√

2
,

u2-intercept: 1
2 .

x

y

−1 1

−1

1

1

√
2

u1

u2

x

y

−1 1

−1

1

1

1√
6

u1

u2

x

y

−1 1

−1

1

1√
2

1
2

u1

u2

11.9.8 The principal axes are 1√
3




1

−1

−1


, 1√

2




1

1

0


, 1√

6




1

−1

2


.

11.10.1 (a) 1− i, (b) 1+5i, (c) 1−5i, (d) 0.

11.10.2 (a)
√

2, (b)
√

6, (c)
√

13.

11.10.3 (a) −6i, (b) 5i.

11.10.7 u1 ⊥ u2, u1 ⊥ u4, and u2 ⊥ u3.

11.10.9 Orthogonal: [0, i,2]T , [1,2, i]T . Orthonormal: 1√
5
[0, i,2]T , 1√

6
[1,2, i]T .
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11.11.1 (a) Yes. (b) Yes. (c) No. (d) Yes.

11.11.2 (a) Yes. (b) No. (c) Yes.

11.11.3 (a) No. (b) Yes. (c) Yes.

11.11.4 All except (b) and (e) are unitary.

11.11.5 Only (f) is unitary.

11.11.8 All except (a), (c), and (d) are hermitian.

11.11.9 Eigenvalues: λ1 = 1 and λ2 = 4. Normalized eigenvectors: v1 =
1√
3

[
1+ i

−1

]
, v2 =

1√
3

[
1

1− i

]
.

D =

[
1 0

0 4

]
, P =

1√
3

[
1+ i 1

−1 1− i

]
.

A.1.1 z+w = 5− i, z−2w =−4+23i, zw = 62+5i, and
w

z
=−50

53
− 37

53
i.

A.1.4 If z = 0, let w = 1. If z 6= 0, let w =
|z|
z

. Note that wz =
|z|
z

z = |z| and |w| = |z||z| = 1.

A.1.5 The problem is that there is no single
√
−1. In the complex numbers, −1 has two square roots,

namely i and −i. Since each complex number has two square roots, and generally neither of them is

positive or even real, the notation
√

z does not have a fixed meaning in the complex numbers. Therefore,

the equation
√

z
√

w =
√

zw cannot be used. At best, we could maybe say
√

z
√

w =±√zw.

A.2.2 Since i has magnitude 1 and argument π/2 (or 90◦), the number z must have magnitude 1 and

argument π/4. It therefore lies at 45◦ on the unit circle. The solution is z = 1+i√
2

. A second solution is

−z =−1+i√
2

, whose argument is −3π/4 or −135◦. Note that if we double this angle, we get −270◦, which

is the same as +90◦.

−i

i

−1 1

z = 1+i√
2

−z =−1+i√
2
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A.2.3 The three solutions can be found on the unit circle at 60◦, 180◦, and 300◦. If we triple any of

these angles, we get 180◦ (up to multiples of 360◦). Thus, the three cube roots of −1 are z = −1 and

z = 0.5±
√

0.75 i.

0.5+
√

0.75 i

−1

0.5−
√

0.75 i

A.3.1 By the quadratic formula, z =
6±
√

16

2
= 3±2i.

A.3.2 p(z) factors as (z−1)(z2+6z+10). The roots are z = 1, z =−3+ i, and z =−3− i.

A.3.3 By trial and error, we find the roots z = 1 and z = −2. Moreover, z = 1 is a double root. We have

z3−3z+2 = (z−1)(z−1)(z+2).

A.3.4 If p(z) = 0 and a0, . . . ,ak are real, we have

p(z) = anzn +an−1zn−1 + . . .+a1z+a0

= an zn +an−1 zn−1 + . . .+a1 z+a0

= anzn +an−1zn−1 + . . .+a1z+a0

= anzn +an−1zn−1 + . . .+a1z+a0

= p(z)

= 0.
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absolute value

of a complex number, see magnitude

addition

closed under, 342

in a field, 43

in a vector space, 325

of complex numbers, 486

of linear transformations, 375

of matrices, 123

of polynomials, 326, 330

of two angles, 232

of vectors, 65, 325

additive inverse, 43, 68, 325

additive unit, 43, 68, 325

adjugate formula, 260

adjugate of a matrix, 259

affine function, 237

affine subspace, 477

affine subspace fitting, 477

algebra

fundamental theorem of, 485

algebraic multiplicity

of an eigenvalue, 312, 321

alternating signs

strongly, 445

weakly, 445

analytic function, 308

angle

between line and plane, 117

between two lines, 107

between two planes, 117

between vectors, 83, 392

in inner product space, 392

antilinearity

of inner product, 458

antisymmetric matrix, 163

approximation, 414, 463

Fourier, 417

least squares, 425

of functions, 415, 417

area

of parallelogram, 91

of triangle, 94

associated homogeneous system, 37

associative law

of addition, 43, 68, 325

of multiplication, 43

of scalar multiplication, 70, 325

augmented matrix, see also matrix, 15

average

of vectors, 477

axiom of choice, 350

back substitution, 13

base case

of a recurrence, 293

basic eigenvector, 271

basic solution, 36, 198

of differential equation, 299

basis, 195, 349

and invertible matrix, 197

basis test, 205

by extending linearly independent set, 203, 352

by shrinking spanning set, 205, 352

existence, 202

of a solution space, 197

of a span, 197

of a vector space, 349

of Rn, 196, 197

orthogonal, 397

orthonormal, 397

size of, 201, 351

standard, 196

basis test, 205

bit, 44

block

block length, 356

code block, 356

message block, 356

block cipher, 168

block size, 168

box product, 95

volume of parallelepiped, 96

byte, 174

541
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C[a,b], 388

calculus

multivariable, 217

camera, 235

camera coordinates, 235

cancellation law

of addition, 331

Cartesian coordinates, 61

Cartesian form

of a complex number, 486

casting-out algorithm, 181

extended, 182

Cauchy-Schwarz inequality

complex, 459

for dot product, 81

in inner product space, 390

Cayley-Hamilton theorem, 315

center of mass, 477

centroid, 477

change of parameters

line, 103

plane, 119

change of variables

for a differential equation, 301

for a quadratic form, 450

characteristic polynomial, 275

Cayley-Hamilton theorem, 315

root, 276

check matrix, 360

chemical reactions

balancing, 51

choice

axiom of, 350

cipher, 167

block cipher, 168

ciphertext, 167

decryption, 167

diffusion, 168

diffusion matrix, 172

encryption, 167

Hill cipher, 168

key, 167

known plaintext attack, 170

plaintext, 167

round, 171

S-box, 171

substitution cipher, 167

ciphertext, 167

classical adjoint, 259

closed formula, 294

closed under

addition, 342

scalar multiplication, 342

code, 356

error correcting, see error correcting code

code block, 356

coefficient, 7, 9

of a linear combination, 71

of a polynomial, 275, 491

of a quadratic form, 448

coefficient matrix, 14, 131

cofactor, 244

cofactor expansion, 245

cofactor matrix, 259

column method

matrix multiplication, 133

column space, 211, 426

column vector, 62, 122

commutative law

of addition, 43, 68, 325

of multiplication, 43

commuting matrices, 137

complex conjugate, 487

properties, 488

complex dot product, 457

properties, 458

complex inner product space, see inner product space

complex number, 49, 485, 486

absolute value, see magnitude

addition, 486

Cartesian form, 486

conjugate, 487

properties, 488

division, 487

field axioms, 487

geometric interpretation, 489

imaginary part, 486

inverse, 486

magnitude, 487, 490

properties, 488

modulus, see magnitude

multiplication, 486
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real part, 486

standard form, 486

subtraction, 486

complex vector space, 326

component

of a matrix, 121

of a vector, 62, 85

principal component, 475

component form

line, 103

plane, 111

componentwise method

matrix multiplication, 131

composite transformation, 231

composition of linear transformations, 231, 377

conjugate

of a complex number, 487

properties, 488

conjugate symmetry

of inner product, 458

consistent system, 9

constant matrix, 14

constant polynomial, 491

constant term, 7, 9

continuous function, 343, 388

coordinate

of a point, 61

with respect to basis, 198, 381

coordinate system

and basis, 198, 381

camera coordinates, 235

Cartesian, 61

object coordinates, 236

coordinate vector, 63

coplanar vectors, 91

cosine

of a matrix, 309

coupled variables, 300

Cramer’s rule, 266

cross product, 91

area of parallelogram, 91

area of triangle, 94

coordinate description, 92

geometric description, 91

Jacobi identity, 98

properties, 92

cryptanalysis, 167, 170

differential, 174

linear, 174

cryptography, 167

current, 56

curve fitting, 428, 476

least squares line, 428

least squares parabola, 430

linear regression, 428

decryption, 167

decryption matrix, 168

degree

of a polynomial, 491

of freedom, 202

derivative, 299

Descartes, René, 445

determinant, 241

and invertibility, 253

cofactor expansion, 245

cofactor of a matrix, 244

Cramer’s rule, 266

expanding along row or column, 244

formula for matrix inverse, 260

Laplace expansion, 245

minor of a matrix, 243

of product, 254

properties of, 255

diagonal matrix, 284

diagonal of a matrix, 248

diagonal quadratic form, 450

diagonalizable matrix, 285, 438

orthogonally diagonalizable, 438

unitarily diagonalizable, 469

diagonalization, 285

orthogonal diagonalization, 438

unitary diagonalization, 469

differentiable function, 343

differential cryptanalysis, 174

differential equation, 299, 344

basic solution, 299

change of variables, 301

coupled variables, 300

eigenfrequency, 305

first order, 299

linear, 299
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mode, 307

resonance frequency, 305

second order, 299

solution, 299

system of, 300

diffusion, 168

diffusion matrix, 172

dimension

of a matrix, 121

of a span, 202

of a vector, 62

of solution space, 201

of subspace of Rn, 201

of vector space, 351

Dirac notation, 464

direction vector, 101, 102

distance

point to line, 108

point to plane, 118

point to point, 76

total squared distance, 473

distance formula, 76

distributive law

of fields, 43

over scalar addition, 70, 325

over vector addition, 70, 325

division

of complex numbers, 487

dot product, 80

complex, 457

from matrix product, 163

properties, 80

echelon form, 18

algorithm, 19

reduced, 29

eigenfrequency, 305

eigenspace, 271

eigenvalue, 269

algebraic multiplicity, 312, 321

calculating, 276

complex, 318

geometric multiplicity, 312, 321

of triangular matrix, 279

eigenvector, 269

basic, 271

calculating, 276

complex, 318

elementary matrix, 153, 154

inverse, 155

elementary operation, 11

elementary row operation, 15, 153, 250

empty linear combination, 178

empty sum, 178

encryption, 167

encryption matrix, 168

entry of a matrix, 121

equality

of linear transformations, 375, 379

of matrices, 122

of vectors, 64

equality of functions, 329

equation

differential, see differential equation

equivalence

row equivalence, 40

system of linear equations, 11

error correcting code, 356

block length, 356

check matrix, 360

code block, 356

error pattern, 361

generator matrix, 360

Hamming code, 364

Hamming distance, 357

Hamming weight, 357

linear code, 359

m-error correcting, 358

m-error detecting, 358

message block, 356

message length, 356

(n,k,d)-code, 357

rate, 356

redundancy, 355

repetition code, 355

syndrome, 362

syndrome decoding, 362

syndrome table, 362

error pattern, 361

Euclidean space, 62

exchange lemma

in a vector space, 350
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in Rn, 200

exponential function

of a matrix, 309

extended casting-out algorithm, 182

Fibonacci sequence, 293

field, 43

integers modulo p, 44

of complex numbers, 49, 487

finite-dimensional space, 351

finitely supported sequence, 341, 350

fitting

affine subspace fitting, 477

curve fitting, 428

line fitting, 428

subspace fitting, 473

formula

closed, 294

Fourier approximation, 417

Fourier coefficients, 398

Fourier series, 420

generalized, 417

free variable, 21, 23

freedom

degree of, 202

frequency

resonance, 305

function, 217

affine, 237

continuous, 343, 388

differentiable, 343

equality of, 329

linear, see linear transformation

symmetric, 348

vanishing at infinity, 348

vector function, 217

vector space of, 329

zero function, 329

FuncX ,K, 329

fundamental theorem of algebra, 485

Gale Young, 473

Gauss-Jordan elimination, 30

Gaussian elimination, 19

general solution, 37

generalized Fourier series, 417

generator matrix, 360

geometric multiplicity

of an eigenvalue, 312, 321

Gram-Schmidt procedure, 404

complex, 462

Hamming code, 364

Hamming distance, 357

Hamming weight, 357

Hamming, Richard, 364

harmonic, 421

hermitian matrix, 468

Hilbert space, 389

Hill cipher, 168

homogeneous system, 34

associated, 37

dimension of solution space, 201

solution space, 191

Hooke’s law, 302

hyperplane, 6, 505

idempotent matrix, 141

identity matrix, 136

identity transformation, 377

(i, j)-entry of a matrix, 121

image plane, 235

imaginary part

of a complex number, 486

included angle, 82

inconsistent system, 9

infinite-dimensional space, 351

inner product, see also dot product, 387

complex, 458

inner product space

Cauchy-Schwarz inequality, 390, 459

complex, 458

Hilbert space, 389

norm, 390, 459

of continuous functions, 388

of polynomials, 389

real, 387

Rn, 388

triangle inequality, 391, 459

integer, 485

integers modulo p, 44, 47

intersection

of a line and a plane, 116

of two lines, 105
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of two planes, 116

inverse

additive, 43, 68, 325

in a field, 43

left inverse, 148

modulo p, 43

multiplicative, 43

of a complex number, 486

of a linear transformation, 233, 377

of a matrix, 142, 149

adjugate formula, 260

does not exist, 146

right inverse, 148

invertible matrix, 142

and determinant, 253

isometry, 432, 466

Jacobi identity, 98

K-vector space, 326

key

cryptography, 167

Kirchhoff’s law, 57

known plaintext attack, 170

Laplace expansion, 245

laws of nature, 302

leading entry, 18

least squares approximation, 425

least squares line, 428

least squares parabola, 430

left inverse, 148

Legendre polynomial, 408, 409

length of a vector, 77

line

angle between, 107

change of parameter, 103

component form, 103

parametric equations, 104

symmetric form equation, 106

vector equation, 101, 102

line fitting, 428

linear code, 359

check matrix, 360

error pattern, 361

generator matrix, 360

Hamming code, 364

syndrome, 362

syndrome decoding, 362

syndrome table, 362

linear combination

coefficient, 71

empty, 178

in a vector space, 334

in Rn, 71

of basic solutions, 36

of differential equation, 299

of matrices, 127, 334

of polynomials, 335

of vectors, 334

linear cryptanalysis, 174

linear dependence, 180, 337

linear differential equation, 299

linear equation, 7

solution, 8

standard form, 8

linear function, see linear transformation

linear independence, 180

alternative characterization, 183

casting-out algorithm, 181

extended, 182

extending to basis, 203, 352

in a vector space, 337

properties, 185

linear map, see linear transformation

linear regression, 428

linear transformation, 217, 369

addition, 375

properties, 376

composition, 231, 377

properties, 377

defined on a basis, 379

equality of, 375, 379

identity transformation, 377

inverse, 233, 377

isometry, 432, 466

matrix of

in Rn, 220

w.r.t. basis, 382

matrix transformation, 220

on Rn, 217

on vector spaces, 369

orthogonal, 432
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properties of addition, 376

properties of composition, 377

properties of scalar multiplication, 376

reflection, 226, 228

rotation, 225, 227, 228, 231

scalar multiplication, 375

properties, 376

scaling, 228

shearing, 228

unitary, 466

zero transformation, 375, 516

linearity

of inner product, 387, 458

LinV ,W , 376

logical operation

and, 44

exclusive or, 44

lower triangular matrix, 248

eigenvalues, 279

magnitude

of a complex number, 487, 490

properties, 488

of a vector, 77

map, see function

matrix, 14, 121

addition, 123

properties, 125

adjugate, 259

antisymmetric, 163

augmented matrix, 14, 15

Cayley-Hamilton theorem, 315

characteristic polynomial, 275

root, 276

classical adjoint, 259

coefficient matrix, 14, 131

cofactor matrix, 259

cofactor of, 244

column space, 211, 426

commuting matrices, 137

component of, 121

constant matrix, 14

decryption, 168

determinant

and invertibility, 253

of product, 254

properties, 255

diagonal matrix, 284

diagonal of, 248

diagonalizable, 285, 438

orthogonally, 438

unitarily, 469

diagonalization, 285

diffusion, 172

dimension of, 121

eigenspace, 271

eigenvalue, 269

calculating, 276

complex, 318

eigenvector, 269

basic, 271

calculating, 276

complex, 318

elementary matrix, 153, 154

inverse, 155

elementary row operation, 15, 153, 250

encryption, 168

entry of, 121

equality, 122

exponential of, 309

finding the inverse, 145

hermitian, 468

idempotent, 141

identity, 136

(i, j)-entry, 121

inverse, 142, 149

adjugate formula, 260

does not exist, 146

left inverse, 148

right inverse, 148

invertible, 142

and determinant, 253

left inverse, 148

lower triangular, 248

eigenvalues of, 279

minor, 243

multiplication, 131

column method, 133

componentwise method, 131

determinant of product, 254

matrix times vector, 129

properties, 138
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row method, 135

negative, 124

nilpotent, 257

null space, 211

nullity, 213

of a linear transformation

in Rn, 220

w.r.t. basis, 382

of a reflection, 226, 228

of a rotation, 225, 227, 228, 231

of a scaling, 228

of a shearing, 228

orthogonal, 257, 434

orthogonally diagonalizable, 438

positive definite, 442

positive semidefinite, 442

properties of addition, 125

properties of determinants, 255

properties of multiplication, 138

properties of scalar multiplication, 127

properties of transpose, 162

raising to a power, 290

rank, 24, 212

rank theorem, 213

rank-nullity theorem, 213

right inverse, 148

row equivalence, 40, 211

row operation, 15, 153, 250

row space, 211

scalar multiplication, 127

properties, 127

similar, 257, 285

sine and cosine of, 309

size of, 121

skew symmetric, 163

square, 122

square root of, 291

subtraction, 124

symmetric, 163, 347, 354, 437, 442

transpose, 162

properties, 162

triangular, 248

eigenvalues of, 279

unitarily diagonalizable, 469

unitary, 467

upper triangular, 248

eigenvalues of, 279

vector space of, 328

zero matrix, 124

matrix form

of a system of equations, 131

matrix form of quadratic form, 449

matrix transformation, 220, 369

message block, 356

message length, 356

minor, 243

Mm,n, 328

mode of resonance, 307

modulo, 44

modulus

of a complex number, see magnitude

multiplication

complex inner product, 458

in a field, 43

inner product, 387

matrix times vector, 129

of complex numbers, 486

of matrices, 131

determinant of product, 254

outer product, 464

scalar multiplication, see scalar multiplication

multiplicative inverse, 43

of a complex number, 486

multiplicative unit, 43

multiplicity

of eigenvalue

algebraic, 312, 321

geometric, 312, 321

of root of a polynomial, 312

multivariable calculus, 217

natural number, 485

negative

of a matrix, 124

of a vector, 66

nilpotent matrix, 257

(n,k,d)-code, 357

non-trivial solution, 34

norm

in Cn, 459

in inner product space, 390

in Rn, 77
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normal equation of a plane, 113

normal vector of a plane, 112

normalized vector, 391, 459

null space, 211

nullity, 213

number

complex, see complex number

Fibonacci, 293

integer, 485

natural, 485

rational, 485

real, 485

object coordinates, 236

offset, 62

operator, see also linear transformation, 369

origin of a coordinate system, 61

orthogonal basis, 397

Gram-Schmidt procedure, 404

complex, 462

orthogonal complement, 394

orthogonal matrix, 257, 434

orthogonal projection

onto subspace, 414

complex, 463

orthogonal set, 396, 459

orthogonal transformation, 432

orthogonal vectors, 84, 394, 459

orthogonalization, 404

complex, 462

orthogonally diagonalizable matrix, 438

orthonormal basis, 397

orthonormal set, 396, 459

outer product, 464

P, 330

basis of, 349

P2, 326

basis of, 349

parallelepiped, 95

volume, 96

parallelogram

area of, 91

parameter, 22, 23, 101

parametric equations

of a line, 104

of a plane, 111

particular solution, 37

periodic sequence, 348, 354

perpendicular vectors, 84

pivot column, 18

pivot entry, 18

pivot variable, 21, 23

plaintext, 167

plane

angle between, 117

change of parameters, 119

component form, 111

hyperplane, 6, 505

image plane, 235

normal equation, 113

normal vector, 112

parametric equations, 111

standard equation, 114

vector equation, 111

point, 61

polynomial, 275, 326, 330, 491

addition, 326, 330

characteristic, see characteristic polynomial

coefficient, 275, 491

constant, 491

degree, 491

Legendre polynomial, 408, 409

root, 276, 491

scalar multiplication, 326, 330

zero, 327

position vector, 63

positive definite matrix, 442

positive definite property, 387, 458

positive semidefinite matrix, 442

power

of a matrix, 290

principal axis, 453

principal component, 475

product, see multiplication

projection

as a linear transformation, 222

in inner product space, 411

onto subspace, 414

complex, 463

point to line, 108

point to plane, 118

vector to vector, 85, 411
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proper subspace, 191

properties of addition

complex numbers, 487

field, 43

linear transformations, 376

matrices, 125

vectors, 68

properties of complex conjugate, 488

properties of composition

linear transformations, 377

properties of cross product, 92

properties of determinants, 255

properties of dot product, 80

complex, 458

properties of linear independence, 185

properties of multiplication

complex numbers, 487

field, 43

matrices, 138

properties of scalar multiplication

linear transformation, 376

matrix, 127

vector, 70

quadratic form, 448

change of variables, 450

coefficient, 448

diagonal, 450

matrix form, 449

principal axes, 453

rank, 24, 34, 42, 212

rank theorem, 213

rank-nullity theorem, 213

rate of a code, 356

rational number, 485

real inner product space, 387

real number, 485

real part

of a complex number, 486

real vector space, 326

recurrence, 293

as a subspace, 343, 352

base case, 293

solving, 294

reduced echelon form, 29

algorithm, 30

redundancy, 355

redundant vector, 177, 179, 180, 339

removing, 187

reflection

about a given vector, 229

matrix of, 226, 228

René Descartes, 445

rendering, 235

repetition code, 355

resistance, 56

resonance

frequency, 305

mode, 307

Richard Hamming, 364

right inverse, 148

right-handed system of vectors, 90

Rn, 62

roll call vote, 479

root

of a polynomial, 276, 491

rotation

matrix of, 225, 227, 228, 231

rounds of a cipher, 171

row echelon form, see echelon form

row equivalence, 40, 211

row method

matrix multiplication, 135

row operation, 15, 153, 250

row space, 211

row vector, 122

rule for multiplication by 1, 70, 325

S-box, 171

scalar, 8

for scaling, 69

scalar multiplication

closed under, 342

in a vector space, 325

of a matrix, 127

of a vector, 69, 325

of linear transformation, 375

of polynomials, 326, 330

scalar product, see dot product

scalar projection, 86

scaling

matrix of, 228
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semidefinite, 442

senate, 479

SeqK , 330

sequence, 330

defined by a recurrence, 293

Fibonacci, 293

finitely supported, 341, 350

periodic, 348, 354

square summable, 389

zero sequence, 344

series

Fourier series, 417, 420

shearing

matrix of, 228

sign

strongly alternating, 445

weakly alternating, 445

similar matrices, 257, 285

sine

of a matrix, 309

size of a matrix, 121

skew lines, 6

skew symmetric matrix, 163

solution

basic, 36, 198

basis of, 198

non-trivial, 34

trivial, 34, 183

solution space, 191

span, 175, 176, 336

as a subspace, 191

dimension of, 202

spanning set, 337

shrink to basis, 205, 352

spring (mechanics), 302

extension, 302

Hooke’s law, 302

spring constant, 302

square matrix, 122

square root

of a matrix, 291

square summable sequence, 389

squared distance, 473

standard basis, 196

standard cube, 236

standard equation of a plane, 114

standard form

of a complex number, 486

of a linear equation, 8

strongly alternating signs, 445

subspace, 190, 342

affine, 477

basis, see basis

dimension, 201

eigenspace, 271

is a span, 195

of Rn, 190

of vector space, 342

proper, 191

solution space of a homogeneous system, 191

span is a subspace, 191

zero subspace, 191

subspace fitting, 473

affine, 477

total squared distance, 473

substitution cipher, 167

subtraction

of complex numbers, 486

of matrices, 124

of vectors, 66

sum, see addition

of two angles, 232

summation notation, 138

symmetric form, 106

symmetric function, 348

symmetric matrix, 163, 347, 354, 437, 442

symmetry

conjugate symmetry, 458

of inner product, 387

syndrome, 362

syndrome decoding, 362

syndrome table, 362

system of differential equations, 300

system of linear equations, 9

consistent, 9

Cramer’s rule, 266

equivalence, 11

homogeneous, 34

dimension of solution space, 201

solution space, 191

inconsistent, 9

matrix form, 131
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non-trivial solution, 34

solution, 9

trivial solution, 34, 183

vector form, 129

tail of a vector, 62

tip of a vector, 62

total squared distance, 473

transpose of a matrix, 162

properties, 162

triangle

area of, 94

triangle inequality

complex, 459

in complex numbers, 488

in inner product space, 391

in Rn, 81

triangular matrix, 248

eigenvalues, 279

trigonometry

sum of two angles, 232

trivial solution, 34, 183

tuple, 8

U.S. Senate, 479

unit

of addition, see additive unit, see additive unit

of multiplication, see multiplicative unit

unit vector, 78, 391

unitarily diagonalizable matrix, 469

unitary matrix, 467

unitary transformation, 466

United States Senate, 479

upper triangular matrix, 248

eigenvalues, 279

vanish at infinity, 348

variable, 7

free, 21, 23, 38

pivot, 21, 23, 38

vector, 62

addition, 65, 325

properties, 68

additive inverse, 68, 325

additive unit, 68, 325

associative law of addition, 68, 325

associative law of scalar multiplication, 70, 325

basis, see basis

cancellation law, 331

casting-out algorithm, 181

extended, 182

column vector, 62, 122

commutative law of addition, 68, 325

component, 85, 86

coplanar, 91

corresponding unit vector, 78

cross product

properties, 92

dimension, 62

direction vector, 101, 102

distributive law, 70, 325

dot product, 80

complex, 457

from matrix product, 163

properties, 80

eigenvector, 269

complex, 318

empty linear combination, 178

equality, 64

from a point to a point, 63

geometric meaning, 62

in a vector space, 326

length, 77

linearly dependent, 180, 337

linearly independent, 180

alternative characterization, 183

in a vector space, 337

properties, 185

magnitude, 77

negative, 66

norm, 77, 390, 459

normal vector, 112

normalized, 391, 459

normalizing a vector, 78

orthogonal, 84, 394, 459

perpendicular, 84

projection of, 85, 86, 411

properties of addition, 68

properties of cross product, 92

properties of dot product, 80

complex, 458

properties of scalar multiplication, 70

redundant, 177, 179, 180, 339
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removing, 187

right-handed system of, 90

row vector, 122

rule for multiplication by 1, 70, 325

scalar multiplication, 69, 325

properties, 70

span, 175, 176, 336

as a subspace, 191

subtraction, 66

tail, 62

tip, 62

unit vector, 78, 391

zero vector, 68, 178

vector equation

of a line, 101, 102

component form, 103

of a plane, 111

component form, 111

vector form

of a system of equations, 129

vector function, 217

linear, see linear transformation

vector projection, 86

vector space, 325

basis, 349

complex, 326

dimension, 351

finite-dimensional, 351

infinite-dimensional, 351

linear independence, 337

of linear transformations, 376

of matrices, 328

of polynomials, 326, 330

of sequences, 330

real, 326

span, 336

spanning set, 337

voltage, 56

volume

of parallelepiped, 96

voting, 479

weakly alternating signs, 445

Young, Gale, 473

zero function, 329

zero matrix, 124

zero polynomial, 327

zero sequence, 344

zero subspace, 191, 342

zero transformation, 375, 516

zero vector, 62, 68, 178
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