

Slovak international scientific journal

№97, 2025 Slovak international scientific journal

The journal has a certificate of registration at the International Centre in Paris – ISSN 5782-5319.

The frequency of publication -12 times per year.

Reception of articles in the journal – on the daily basis.

The output of journal is monthly scheduled.

Languages: all articles are published in the language of writing by the author.

The format of the journal is A4, coated paper, matte laminated cover.

Articles published in the journal have the status of international publication.

The Editorial Board of the journal:

Editor in chief - Boleslav Motko (Bratislava) Slovakia

The secretary of the journal – Milica Kovacova (Bratislava) Slovakia

- Lucia Janicka (Bratislava) Slovakia
- Stanislav Čerňák (Bratislava) Slovakia
- Miroslav Výtisk (Nitra) Slovakia
- Dušan Igaz (Nitra) Slovakia
- Terézia Mészárosová (Banská Bystrica) Slovakia
- Peter Masaryk (Rzeszów) Poland
- Filip Kocisov (Wrocław) Poland
- Andrej Bujalski (Košice) Slovakia
- Jaroslav Kovac (Trnava) Slovakia
- Paweł Miklo (Bratislava) Slovakia
- Jozef Molnár (Bratislava) Slovakia
- Tomajko Milaslavski (Nitra) Slovakia
- Natália Jurková (Bratislava) Slovakia
- Jan Adamczyk (Prague) Czech Republic
- Boris Belier (Bratislava) Slovakia
- Stefan Fišan (Bratislava) Slovakia
- Terézia Majercakova (Wien) Austria
- Ekaterina Semko (Kyiv) Ukraine

1000 copies

Slovak international scientific journal

Partizanska, 1248/2

Bratislava, Slovakia 811 03

email: info@sis-journal.com

site: http://sis-journal.com

CONTENT

BOTANY

Safarova A., Arabova G. STUDY OF THE FUNGAL BIODIVERSITY OF PISTACHIO	
(PISTACIA VERA L.) ORCHARDS IN AZERBAIJAN4	
CHEM	ISTRY
Ablakulov L., Ikramov A., Ziyadullaev O., Qushbaqov F. SYNTHESIS OF ACRYLATES OF SOME ACETYLENE DIOLS BY ESTERIFICATION REACTION	Enukidze L., Loladze T. DETERMINATION OF COPPER, LEAD, CADMIUM AND ZINC IN SPICES, PRODUCED IN GEORGIA, BY THE DIFFERENTIAL – IMPULSE POLAROGRAPHY METHOD
COMPUTER	R SCIENCES
Mamatov N., Niyozmatova N., Tojiboyeva Sh., Samijonov A., Mashanpin T., Yakhyayev B. EMOTION CLASSIFICATION USING MACHINE LEARNING METHODS	
EARTH S	CIENCES
Yatsevich S., Yefimov V., Bychkov D., Yatsevich E. APPLICATION OF RADIOPHYSICAL METHODS FOR THE KEMOTE SENSING OF SUBSUPERFICIAL OBJECTS FROM THE SLAR OF AIRPLANE-LABORATORY24	
ECON	ЮМУ
Hasanov A., Samadov I. THE ESSENCE AND SECTORAL FEATURES OF SUSTAINABLE DEVELOPMENT IN TOURISM	Qudratov I. PROSPECTS FOR ACCELERATING GREEN FINANCE IN THE BANKING SECTOR
ANALYSIS OF THE REAL ESTATE MARKET AND TRENDS	
IN THE REPUBLIC OF ARMENIA45	
MOLECULA	R BIOLOGY
Balakhanova G., Ibrahimova Kh. ASSESSMENT OF THE ECOLOGICAL FUNCTIONS OF FUNGAL BIOTA IN URBAN SOIL ECOSYSTEMS55	
PARASITOLOG	ICAL SCIENCES
Bandelizade G., Ismayilova K., Bakhshiyeva S., Aliyeva G., Abbasova Y. APPLICATION OF REAL-TIME PCR AND KATO-KATZ	

METHODS IN MONITORING THE TREATMENT

EFFICACY OF TRICHURIS TRICHIURA INFECTIONS58

CHEMISTRY

SYNTHESIS OF ACRYLATES OF SOME ACETYLENE DIOLS BY ESTERIFICATION REACTION

Ablakulov L..

Chirchik State Pedagogical University, Uzbekistan, Chirchik

Ikramov A..

t.f.d., prof

Tashkent Institute of Chemical Technology, Uzbekistan, Tashkent

Ziyadullaev O..

k.f.d., prof

Chirchik State Pedagogical University, Uzbekistan, Chirchik

Doctor of Chemical Sciences, Professor,

Academy of the Ministry of Emergency Situations of the Republic of Uzbekistan, Uzbekistan, Tashkent

Qushbaqov F.

Chirchik State Pedagogical University, Uzbekistan, Chirchik

Abstract

For the first time, the synthesis of complex esters was carried out using the etherification reaction of acetylene diols with acrylic acid under the catalysis of C_6H_6 and concentrated H_2SO_4 solvents. The factors affecting the yield of the synthesized complex esters, including the ratios of starting materials, temperature, reaction time, catalysts and solvents, were determined and analyzed. Based on the results obtained, the 1H NMR spectra of the synthesized complex esters were analyzed. Based on the results obtained, the most optimal conditions for the process were studied, and the composition, purity, structure and quantum-chemical properties and Rf values of the synthesized complex esters were proven by modern physico-chemical research methods, and the efficiency range was determined.

Keywords: acetylene diols, esters, acrylic acid, sulfuric acid, benzene etherification reaction, reaction mechanism, product yield, catalyst and solvent.

Introduction: Currently, the synthesis of complex esters based on the esterification reaction of carbon acids with acetylene alcohols is being carried out worldwide and is being widely used in various sectors of society. This includes significant applications in agriculture, medicine, and perfumery [1-3]. For this reason, deep scientific research is being conducted by scientists around the world on the synthesis of complex esters of acetylene diols with carbon acids and their applications [4. 6-10] Among these, the complex esters of acetylene alcohols with saturated carbon acids, as well as those with unsaturated carbon acids, are of great importance [5. 11-14]. The complex esters of acrylic acid, which is an unsaturated carbon acid, are being widely used in many fields [15-17]. Considering these needs, the synthesis of complex esters of acetylene diols was carried out, and their analysis was conducted using physicochemical research methods [18-21].

Experimental Section: (As an example, the synthesis of 3,4-dimethyl-1,6-diphenylhexa-1,5-diene-3,4-diol diacrylate is presented.) The synthesis of complex esters was carried out in a double-layer reactor made of thermally and mechanically strong quartz glass with a capacity of 500 ml. The reactor was equipped with a mechanical stirrer, two spray nozzles, a reflux condenser, and a Dean-Stark apparatus. Initially, 130 ml of C_6H_6 and 1.47 ml (0.015 mol) of concentrated sulfuric acid (H_2SO_4) were added to the reactor while stirring for 1 hour. The resulting catalytic system was maintained at 75-80°C with H_2SO_4/C_6H_6 , and 95.22 ml (0.3 mol) of 3,4,5-trimethyl-1,7-diphenylheptadiyne-1,6-diol-3,5 and 28.8 ml (0.4 mol) of acrylic acid were

added dropwise through the nozzle over 6 hours. To prevent the water produced from hydrolyzing the expected product, the Dean-Stark apparatus continuously separated it from the system. After the water separation was complete, the resulting reaction mixture was dried for 24 hours with MgSO₄ and extracted with DEE (3×50). The mixture was then fractionated under vacuum. Based on the experimental results, 99.5 grams of 3,4,5-trimethyl-1,7-diphenylhepta-1,6-diene-3,5-diol diacrylate was synthesized with a yield of 80.2%, along with 8% of starting materials, 6% of by-products, and 4% of waste.

We also synthesized the following complex esters using the same method:

- 1. 82% yield of 3,4-dimethyl-1,6-diphenylhexa-1,5-diene-3,4-diol diacrylate,
- 2. 80.6% yield of 3,5-dimethyl-1,7-diphenyl-hepta-1,6-diene-3,5-diol diacrylate,
- 3. 80.2% yield of 3,4,5-trimethyl-1,7-diphenylhepta-1,6-diene-3,5-diol diacrylate,
- 4. 78.5% yield of 3,6-dimethyl-1,8-diphenylocta-1,7-diene-3,6-diol diacrylate,
- 5. 77.2% yield of 3-methyl-1,7-diphenyl-5-(thiophenyl-2)hepta-1,6-diene-3,5-diol diacrylate, and
- 6. 75.3% yield of 1,7-diphenyl-3-(thiophenyl-2)-5-(trifluoromethyl)hepta-1,6-diene-3,5-diol diacrylate.

Reaction Scheme and Mechanism: The acetylene diol molecules participate in the esterification reaction with carbon acids due to the presence of substituents, three bonds, and the reactive hydroxyl (OH) group. In this work, the esterification reactions of the

following diols with acrylic acid are presented: 3,4-dimethyl-1,6-diphenylhexa1z2-1,5-diol-3,4; 3,5-dimethyl-1,7-diphenylhepta-1,6-diol-3,5; 3,4,5-trimethyl-1,7-diphenylhepta-1,6-diol-3,5; 3,6-dimethyl-1,8-di-

phenylocta-1,7-diol-3,6; 3-methyl-1,7-diphenyl-5-(thiophenyl-2)hepta-1,6-diol-3,5; and 1,7-diphenyl-3-(thiophenyl-2)-5-(trifluoromethyl)hepta-1,6-diol-3,5. The reaction mechanism is proposed based on literature sources as follows [13,18-19].

1. R1 = Me, $R_3 = Me$,

2. R2= Me, R_2 = H, R_3 = Me,

3. R3 = Me, $R_2 = Me$, $R_3 = Me$,

First, sulfuric acid protonates acrylic acid and increases its electrophilicity. The oxygen atom of the acetylene diol attacks the carbonyl group of the protonated acrylic acid, resulting in the formation of a complex ester and water.

4. R4= Me, R_2 = 2H, R_3 = Me,

5. R5= Th, R_2 = H, R_3 = Me,

diene-1,6-diol-3,5, the oxygen atoms in the two OH hydroxyl groups undergo stepwise electrophilic attack by the protonated acrylic acid, leading to the expected formation of a complex ester and water.

To synthesize complex esters with high efficiency, the nature and structure of substituents in acetylene diols and acrylic acid molecules, as well as the effects of temperature, reaction duration, catalyst, and solvent nature were systematically analyzed and studied [19-21].

Initially, the effect of temperature on the yield of complex esters was investigated. The process was conducted over 6 hours at temperatures ranging from 60 to 100 °C, using benzene as the solvent and sulfuric acid as the catalyst, with acetylene diol and acrylic acid re-

acting at molar ratios of 0.3 and 0.4. At 80 °C, the catalyst H₂SO₄ interacted with the carbonyl group of acrylic acid, forming an intermediate compound that facilitated an easy reaction with acetylene diols, resulting in a favorable environment for high product yields. However, when the temperature was increased to 100 °C, a decrease in product yield was observed due to the reversion of the synthesized complex esters back to the starting materials or the dehydration of acetylene diols, leading to the formation of by-products.

Table 1

Effect of temperature on the synthesis of esters (catalyst H₂SO₄)

Complex Ester	Product Yield, %			
Complex Ester	60 °C	80 °C	100 °C	
1	74	82	44	
2	73	80,6	39	
3	72	80,2	42	
4	70	78,5	40	
5	69	77,2	35	
6	60	75,3	29	

The duration of the reaction for the esterification of acetylene diols with acrylic acid was conducted at 80 °C in a benzene solution for periods ranging from 3 to 8 hours (see Table 2). When the process was carried out for 6 hours, it was observed that only a small amount of intermediate and by-products were formed, and the synthesized product had a low conversion to complex esters and minimal reversion to starting materials. During the reaction, water was continuously collected in a Dean-Stark apparatus, which prevented the hydrolysis of the complex ester by water and achieved high yields.

When the reaction duration was increased to 8 hours, the protons from sulfuric acid attacked the unshared electrons on the oxygen atom of the hydroxyl group in the acetylene diol, resulting in the protonation of the OH group and a decrease in the nucleophilicity of the diol as well as the activity of the catalyst. This led to a decrease in the expected yield of the complex ester. The maximum yield of the product was determined when the reaction time increased from 3 to 5 hours at 80 °C with $\rm H_2SO_4$ as the catalyst in benzene solution, but a decrease in yield was observed when extending the reaction time from 5 to 8 hours.

Table 2
Effect of Reaction Duration on the Yield of Complex Esters
(Temperature: 100 °C, Catalyst: H₂SO₄, Solvent: C₆H₆)

Complex Ester	Product Yield, %						
Complex Ester	3 hours	4 hours	6 hours	8 hours			
1	38	72	82	66			
2	33	68	80,6	61			
3	36	71	80,2	63			
4	34	70	78,5	60			
5	29	60	77,2	53			
6	25	52	75.3	46			

The amount of starting materials in the esterification reaction of acetylene diols with acrylic acid was also studied (see Table 3). Initially, when the starting materials 3,4,5-trimethyl-1,7-diphenylheptadiene-1,6-diol-3,5 and acrylic acid were taken in molar ratios of 0.3:0.2 and 0.3:0.3, a deficiency of acrylic acid was observed after the process stopped, which led to a decrease in product yield due to excess acetylene diols remaining in the system. When the molar ratio of the

starting materials was adjusted to 0.3:0.4, a higher yield of the product was achieved. This increase in yield was attributed to the complete ionization of acetylene diol and acrylic acid molecules, which enhanced the activity of the intermediate complex compounds, resulting in higher yields of complex esters. However, when the amounts of the reagents and substrates were set to 0.2:0.4 mol, a decrease in product yield was also observed.

Table 3. Effect of Starting Materials on the Yield of Complex Esters (Temperature: 100 °C, Solvent: C₆H₆)

Complex Ester	Product Yield, % in molar ratios of				
Complex Ester	0,3:0,2	0,3:0,3	0,3:0,4	0,2:0,4	
1	38,2	63,6	82	65	
2	35,8	61,4	80,6	61,6	
3	36,4	60,5	80,2	63,4	
4	34,6	59,4	78,5	60	
5	29,5	57,7	77,2	53,5	
6	25,7	52	75,3	46,8	

The composition, purity, structure, and physicochemical properties of the synthesized complex esters were determined using modern methods such as ¹H-NMR, spectroscopy, mass spectrometry, chromatographic techniques (TLC, HPLC), quantum-chemical methods, and other physicochemical research methods (see Figures 1, 2, and 3). Based on the research results, the composition of the synthesized complex esters was calculated (see Table 3).

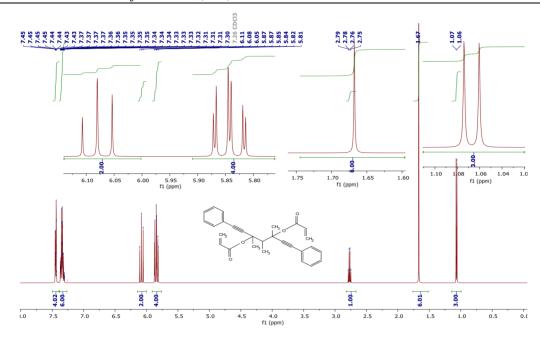


Figure 1. ¹H NMR Spectrum of 3,4,5-Trimethyl-1,7-Diphenylhepta-1,6-diene-3,5-diol Diacrylate.

Analysis of the 1 H NMR Spectrum of 3,4,5-Trimethyl-1,7-Diphenylhepta-1,6-diene-3,5-diol Diacrylate. 1 H NMR (400 MHz, Chloroform-d) δ 7.50 - 7.38 (m, 4H), 7.39 - 7.27 (m, 6H), 6.08 (t, J = 13.4 Hz, 2H), 5.84 (td, J = 13.2, 2.6 Hz, 4H), 2.77 (q, J = 6.8 Hz, 1H), 1.67 (s, 6H), 1.07 (d, J = 6.8 Hz, 3H).

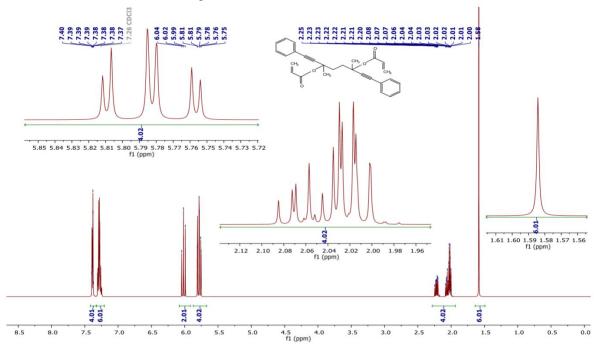


Figure 2. ¹H NMR Spectrum of 3,6-Dimethyl-1,8-Diphenylocta-1,7-diene-3,6-diol Diacrylate.

Analysis of the 1H NMR Spectrum of 3,6-Dimethyl-1,8-Diphenylocta-1,7-diene-3,6-diol Diacrylate. 1H NMR (500 MHz, Chloroform-d) δ 7.42 - 7.33 (m, 4H), 7.33 - 7.21 (m, 6H), 6.08 - 5.91 (m, 2H), 5.78 (td, J = 13.2, 2.6 Hz, 4H), 2.28 - 1.94 (m, 4H), 1.58 (s, 6H).

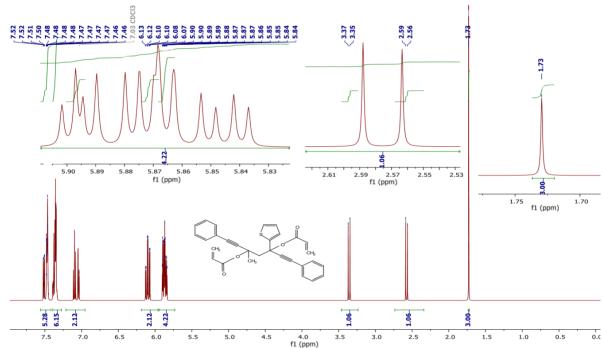


Figure 3. ¹H NMR Spectrum of 3-Methyl-1,7-Diphenyl-5-(Thienyl-2) Hepta-1,6-Diene-3,5-Diol Diacrylate.

Analysis of the ¹H NMR Spectrum of 3-Methyl-1,7-Diphenyl-5-(Thienyl-2) Hepta-1,6-Diene-3,5-Diol Diacrylate.

 1 H NMR (400 MHz, Chloroform-d) δ 7.56 – 7.42 (m, 5H), 7.39 – 7.27 (m, 6H), 7.21 – 6.95 (m, 2H), 6.10 (td, J = 13.4, 4.0 Hz, 2H), 5.96 – 5.73 (m, 4H), 3.36 (d, J = 12.4 Hz, 1H), 2.58 (d, J = 12.3 Hz, 1H), 1.73.

Elemental Analysis Results of Synthesized Complex Esters

Table 4

Complex es-	Brutto for-	Molecular Mass,	Analysis Re-	Element Name and Analysis				
ters	mula	g/mol	sults	C	Н	O	S	F
1 0 11 0	200.40	Calculated	78,5	5,8	15,9	-	ı	
1	$C_{26}H_{22}O_4$	398,48	Identefied	78,3	5,6	16,1	-	ı
2 C ₂₇ H ₂₄ O ₄	СИО	H ₂₄ O ₄ 412,51	Calculated	78,25	5,54	15,30	-	ı
	$C_{27}\Pi_{24}O_4$		Identefied	78,6	5,9	15,5	-	ı
3 C ₂₈ H ₂₆ O ₄	426,54	Calculated	79,21	6,18	15,82	-	ı	
		Identefied	78,8	6,1	15,0	-	ı	
4	126.51	Calculated	79,21	6,18	15,82	-	ı	
4	4 $C_{28}H_{26}O_4$ 426,54	420,34	Identefied	78,8	6,1	15,0	-	ı
5 C ₃₀ H ₂₄ O ₄ S	190.61	Calculated	75,87	5,38	13,31	6,8	ı	
	С30П24О4S	$C_{30}H_{24}O_4S$ 480,61	Identefied	75,0	5,0	13,3	6,7	-
6 C ₃₀ H ₂₁ O ₄ SF3	524 50	Calculated	66,9	4,17	11,97	5,95	10,15	
	C ₃₀ H ₂₁ O ₄ SF 3	C ₃₀ H ₂₁ O ₄ SF3 534,58	Identefied	67,4	4,0	12,0	6,0	10,7

Conclusion: The synthesis of complex esters was conducted for the first time through the esterification reaction of acetylene diols using concentrated sulfuric acid as a catalyst and benzene as a solvent, with acrylic acid involved. The reaction mechanisms were proposed based on literature sources, and the structure, composition, and Rf values of the synthesized complex esters were determined using modern physicochemical research methods.

As a result, the following complex esters were synthesized:

- 1. 3,4-Dimethyl-1,6-Diphenylhexa-1,5-diene-3,4-diol diacrylate,
- 2. 3,5-Dimethyl-1,7-Diphenylhepta-1,6-diene-3,5-diol diacrylate,

- 3. 3,4,5-Trimethyl-1,7-Diphenylhepta-1,6-diene-3,5-diol diacrylate,
- 4. 3,6-Dimethyl-1,8-Diphenylocta-1,7-diene-3,6-diol diacrylate,
- 5. 3-Methyl-1,7-Diphenyl-5-(Thienyl-2) Hepta-1,6-diene-3,5-diol diacrylate, and
- 6. 1,7-Diphenyl-3-(Thienyl-2)-5-(Trifluoromethyl) Hepta-1,6-diene-3,5-diol diacrylate.

References

- 1. G.F. D'aleluo, R.C. Evers Linear polymers of acrylyc monomers containing a acetylenic moiety. J. Polym. Sci., 1967, part A-I, v. 5, p. 818-832.
- 2. G.F. D'aleluo, R.C. Evers Linear polymers of some vinil monomers containing atrminal acetylenic

- group. J. Polym. Sci., 1967, part A-I, Voluemu. 5, p. 999-1014.
- 3. Boytemirov O.E., Ziyadullaev O.E., Abdurakhmanova S.S., Samatov S.B., Ikramov A., Qo'shbaqov F.Z. Synthesis of vinyl ethers of some acetylene alcohols // VI North Caucasus organic chemistry symposium, 2022, Ставрополь, с. 154.
- 4. Ziyadullayev O.E. Fenilatsetilen va metilizopropilketon asosida neft va neft mahsulotlari mikroorganizmlarga qarshi antikorrozion bioingbitor sintezi // Kimyo va kimyo texnologiyasi, 2012, № 3. 32-43 б.
- 5. Караев С.Ф., Гараева Ш.В. Пропаргиловые эфиры. Успехи химии, 1980, т. 49, вып. 9, -С. 1775-1800
- 6. Иванов Е.С. Ацетиленовые эфиры эффективные ингибиторы коррозии стали. Тезисы докладов VI Всесоюзный научной конференции по химии ацетилена. Баку, изд-во Азинефтехим. 1979, С. 19.
- 7. М. Г. Велиев, О. А. Садыгов, Н.А. Мамедова, С.А. Мустафаев Этирификация ацетиленовыми спиртами нефтяных нафтеновых кислот // Нефтехимия, 2009, том 49, № 3, с 247-252.
- 8. М. А. Дюсебаева, С.Н. Калугин, Ш.С. Ахмедова Синтез эфиров на основе ненасыщенных спиртов гетероциклического ряда // Серия химии и технологии 2015 Volume 5, № 413, с 149-153.
- 9. Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. DOI: 10.1002/9783527627622
- 10. Hirose D, Gazvoda M, Kosmrlj J, Taniguchi T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. // Chemical Science. 2016; Volume 9, Isuue 7, pp. 5148-5159.
- 11. Hirose D, Taniguchi T, Ishibashi H. Recyclable Mitsunobu reagents: Catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen. // Angewandte Chemie, International Edition. 2013, Volume 4, Isuue 52, :pp. 4613-4617.
- 12. Mitsudo T, Hori Y, Yamakawa Y, Watanabe Y. Ruthenium-catalyzed selective addition of carboxylic acids to alkynes. A novel synthesis of enol esters. The Journal of Organic Chemistry. 2017; Volume 9, Isuue 52, pp. 2230-2239.
- 13. Katsuki Ohta, Eri Koketsu, Yuya Nagase, Nami Takahashi, Hiroyasu Watanabe, Mitsuhiro Yoshimatsu Lewis Acid-Catalyzed Propargylic Etherification and Sulfanylation from Alcohols in MeNO₂–H₂O

- // Chemical and Pharmaceutical Bulletin 2011, Volume 7, Issue 59(9) pp. 1133—1140.
- 14. Francis Mariaraj Irudayanathan, Jimin Kim, Kwang Ho Song, Sunwoo Lee Transition-Metal-Free Decarboxylative Coupling Reactions for the Synthesis of Propargyl Alcohols // Asian Journal of Organic Chemistry, 2016, Volume 5, pp. 1148-1154.
- 15. Samatov S. B. Benzaldegidning turli hosilalarini alkinillash asosida atsetilen spirtlari sintezi // kimyo fanlari boʻyicha falsafa doktori (PhD) ilmiy darajasini olish uchun yozilgan dissertatsiya ishi 100-107b.
- 16. Зиядуллаев О.Э., Икрамов А.И., Нурманов С.Э., Мирхамитова Д.Х., Мавлоний М.Э. Реакции ароматических ацетиленовых спиртов с некоторыми ненасыщенными карбоновыми кислотами // II-nd International Kazakhstan-Russian Conference on Chemistry and Chemical Engineering. Karaganda: Kazakhstan, 2012. Vol. 1. P. 377-380.
- 17. Boytemirov O.E., Ziyadullaev O.E., Abdurakhmanova S.S., Samatov S.B., Ikramov A., Qo'shbaqov F.Z. Synthesis of vinyl ethers of some acetylene alcohols // VI North Caucasus organic chemistry symposium, 2022, Ставропол, с. 154.
- 18. Ziyadullayev O.E., Jo'rayev O.E., Mirxamitova D.X. Ketonlar asosida neft mikroorganizmlarga qarshi ingbitorlar yaratish va ularni sintez qilish texnologiyasi // Kimyo va kimyo texnologiyasi, 2012, $N_2 = 4.45$
- 19. Boytemirov O.E., Ziyadullaev O.E., Abdurakhmanova S.S., Samatov S.B., Ikramov A., Qo'shbaqov F.Z. Synthesis of vinyl ethers of some acetylene alcohols // VI North Caucasus organic chemistry symposium, 2022, Ставропол, с. 154.
- 20. Абдурахманова С.С., Зиядуллаев О.Э., Отамухамедова Г.Қ., Тиркашева С.И., Саматов С.Б. Юкори асосли каталитик система ёрдамида нефт саноати биокоррозисига карши ингибиторлар синтези // Республиканской научно-технической конференции "Инновационные разработки в сфере науки, образования и производства-основа инвестиционной привлекательности нефтегазовой отрасли", Ташкент, 2019. С. 323-328.
- 21. Зиядуллаев О.Э., Икрамов А.И., Нурманов С.Э., Мирхамитова Д.Х., Мавлоний М.Э. Реакции ароматических ацетиленовых спиртов с некоторыми ненасыщенными карбоновыми кислотами // II-nd International Kazakhstan-Russian Conference on Chemistry and Chemical Engineering. Karaganda: Kazakhstan, 2012. Vol. 1. P. 377-380.